Detailed contamination investigation

New residential units, 49 Court Street, Balranald NSW

Envirowest Consulting Pty Ltd ABN 18 103 955 246 • 9 Cameron Place, PO Box 8158, Orange NSW 2800 • Tel (02) 6361 4954 • • 6/72 Corporation Avenue, Bathurst NSW • Tel (02) 6334 3312 •

• Email admin@envirowest.net.au • Web www.envirowest.net.au •

Environmental Geotechnical Asbestos Services

Docum	Document control							
Client	CWPM Steven Bird Steven.Bird@cv	vpm.com.au						
Rev	Report number	Date	Prepared by	Checked by	Revision details/status			
0	R15067c1	22/12/2022	Tiffany Skinner BNatRes (Hons) Environmental Scientist	Greg Madafiglio CEnvP SC Senior Environmental Scientist				

Envirowest Consulting Pty Ltd 9 Cameron Place PO Box 8158 Orange NSW 2800 T 02 6361 4954

6/72 Corporation Avenue Bathurst NSW 2795 T 02 6334 3312

E admin@envirowest.net.au W envirowest.net.au

Copyright © 2022 Envirowest Consulting Pty Ltd. This document is copyright apart from specific uses by the client. No part may be reproduced by any process or persons without the written permission of Envirowest Consulting Pty Ltd. All rights reserved. No liability is accepted for unauthorised use of the report.

Background

Four studio apartment cabins are proposed for 49 Court Street, Balranald NSW. Preliminary contamination investigations undertaken by Envirowest Consulting Pty Ltd (report 15067c) identified soil stockpiles on-site used for leveling works and evidence of vehicles accessing the site.

A Detailed Contamination Investigation is required to complete the data gaps, determine soil contamination status and suitability for the proposed land-use.

Objectives of investigation

The objective of the investigation was to compete the data gaps to determine suitability of the site for the proposed land-use.

Scope

The scope was to identify past potentially contaminating activities, identify potential contamination, undertake sampling and analysis program to assess the site for the the potential contaminants of concern. The works included site inspection, review of available information, soil sampling, analysis, comparison with adopted criteria for the proposed land-use.

Summary

An inspection of the investigation area was made on 1 December 2022. The investigation area was vacant maintained lawn. The historical land-use of the investigation area is vacant. Building sand was stockpiled in a small area on the site. Soil from hospital excavations containing trace concrete rubble was stockpiled on the site during construction of the adjacent Balranald Multipurpose Health Service (MPS).

Vegetation cover on the site was complete and dominated by fescue lawn and weeds. Trace concrete cobbles were scattered across the investigation area. No asbestos containing materials were observed. A slight raised soil mound was identified in the former stockpile footprint. The mound is expected to be the levelled former stockpiles from hospital excavations. Surface sand was observed in a small area in the eastern section of the investigation area. No evidence of building, mines or contaminating activities were identified in the investigation area.

The investigation included sampling of the site at 13 loations over the 0.4ha. Boreholes were drilled to a depth of 300mm and the soil profile described. Soils samples were collected at the 0-100mm depth in each borehole and 200mm-300mm depth at one borehole. The soil samples were analysed for the contaminants of concern which included heavy metals, total petroleum hydrocarbons (TRH C6-C40) and polycyclic aromatic hydrocarbons (PAH).

The soil was is red brown clayey sand to 120-170mm over red brown sandy clay to 300mm. All soil profiles were uniform with dry soil on the surface and moist in the sandy clay subsoil. Some surface layers contain trace gravel and rock. Concrete cobbles were observed on the surface at several locations. It was reported some crushed concrete was buried in the site from past hospital footing excavations. The extent is not known however based on surface observations and boreholes not expected to be significant.

The soil sampling program did not detect elevated levels of assessed contamininats. The levels of all analytes were below adopted thesholds for residential land-use with access to the soil.

Recommendations

The data gaps have been completed and theinvestigation area is suitable for proposed residential landuse.

Contents

page

Sum 1.	nmary report Introduction	
1. 2.	Objectives	-
2. 3.	Scope of work	
4.	Site identification	
5.	Site history	
6.	Site condition and surrounding environment	
7.	Conceptual site model	
8.	Data quality objectives (DQO)	
9.	Sampling analysis plan and sampling methodology	. 15
10.	Quality assurance and quality control	. 16
11.	Assessment criteria	. 18
12.	Results and discussion	. 19
13.	Site characterisation	
14.	Conclusions and recommendations	
15.	Report limitations and intellectual property	
	References	
Figu	res	. 25
	Figure 1. Locallty map	
	Figure 2. Site layout	
	Figure 3. Field sampling log	
	Figure 4. Photographs of the site	
Δnn	endices	30
/ pp	Appendix 1. Soil sampling protocols	
	Appendix 2. Sample analysis, quality assurance and quality control (QAQC) report	
	Appendix 3. Field sampling log	
	Appendix 4. Borelogs	
	Appendix 5. PID calibration certificate	
	Appendix 6. Soil analysis results – SGS report number SE240159, ALS ES2243874	

1. Introduction

Four studio apartment cabins are proposed for 49 Court Street, Balranald NSW. Preliminary contamination investigations undertake by Envirowest Consulting Pty Ltd (report 15067c) identified soil stockpiles were levelled and evidence of vehicles accessing the site.

A Detaiaed Contamination Investigation is requied to compete the data gaps, determine soil contamination status and suitability for proposed land-use

2. Objectives

The objective of the investigation was to compete the data gaps to determine suitability of the site for the proposed land-use.

3. Scope of work

Envirowest Consulting Pty Ltd was commissioned by CWPM to undertake a detailed contamination investigation, in accordance with the contaminated land management planning guidelines, of 49 Court Street, Balranald NSW. The scope of works included site inspection, review of available information, soil sampling, analysis, comparistion with adopted criteria for the proposed land-use.

Address	Part 49 Court Street
	Balranald NSW
Deposited plans	Part Lot 2 DP792299
Latitude and longitude	-34.6436º 143.5678º
Geographic coordinates	54H E735355m S6163475m
Client	СШРМ
Owner	Balranald MPS
Current occupier	Vacant
Area	Part Lot - 7,133m ² Investigation area – approximately 4,000m ²
Local government area	Balranald Shire Council
Current zoning	RU5 – Village (Balranald LEP 2010)
Trigger for investigation	New studio apartment cabins
Locality map	Figure 1

4. Site identification

5.1 Land-uses

The site is maintained open space adjacent to the Balranald Multipurpose Service. Proposed land-use is residential unit for health workers.

5.2 Summary of council records

A planning certificate was obtained for 49 Court Street, Balranald NSW. Balranald Shire Council has not received notice under the *Contaminated Land Management Act* 1997 that the land is:

- subject to a management order
- subject of an approved voluntary management proposal
- subject to an ongoing maintenance order
- subject to a site audit statement.

Council records do not have sufficient information about previous use of the land to determine whether the land is contaminated.

Balranald Local Environmental Plan (2010) has the site mapped as:

- Groundwater vulnerability
- Bushfire prone land

5.3 EPA databases

The site is not listed on the NSW EPA register of contaminated sites (20 December 2022) or sites notified to the EPA (8 December 2022).

No sites listed on NSW EPA register of contaminated sites or sites notified to the EPA have been identified within 1km of the site.

5.4 Safework NSW Storage of hazardous chemicals

An application for a site search for schedule 11 hazardous chemicals on premise was submitted to SafeWork NSW.

The resulting file was related to the Balranald Shire Council Water Supply Pumping Station which is located downslope and south of the site. Hazardous chemicals stored at the water supply pumping station are not expected to be impacting on the contamination status of the site.

No schedule 11 hazardous chemicals are known to have been stored on the site.

5.5 POEO public register

The site is not listed on the NSW EPA POEO public register.

One license listed on NSW EPA POEO public register have been identified within 1km of the site. The license (3222) for miscellaneous licensed discharge to waters is issued to Balranald Shire Council for the Balranald Water Treatment Works located at 36 Court Street, Balranald NSW. The license was surrendered in 2007. Discharge to waters is not expected to have impacted on the contamination status of the site. Surrended

5.6 Other government agency databases

The site is not listed on the following databases:

- National Liquid Fuel Facilities database
- The NSW Government PFAS Investigation Program
- Defence PFAS Investigation Program
- Defence PFAS Management Program
- Airservices Australia National PFAS Management Program

Two petrol stations are listed on the national liquid fuel facilities database as occurring within 1km of the site. The petrol stations are located approximately 400m and 550m north west of the site along Market Street. Potential contamination originating from the petrol stations is not expected to be impacting on the site due to expected groundwater flow direction.

No additional sites listed on government agency databases have been identified within 1km of the site.

5.7 Sources of information

NSW EPA records of public notices under the CLM Act 1997 Soil and geological maps Historical aerial photographs including NSW Government historical imagery and Google Earth Google street maps Balranald LEP 2010 Balranald Shire Council Discussions with Gavin Llyod long time maintance/groundsman

5.8 Review of historic aerial photographs, maps and plans

5.8.1 Aerial photographs

	Anna photographio
Year	Comment
1955	The site is vacant, located on the verge of village development. A tree line is evident in the west. The assumed Balranald hospital is adjacent to the south east. Rural land is located to the east.
1965	The site appears vacant. No significant changes to surrounding land.
1973	Two tracks traverse the site. A track traverses the site east to south and north to south.
1991	The east to south track provides access to the ambulance station from Market Street. The track traversing noth to south is no longer evident. The assumed Balranald ambulance station has been constructed on surrounding land to the south. A shed has been constructed on surrounding land to the north east. Infrastructure including sheds, tracks and ponds are evident on surrounding land to the south.
1997	Vegetation on the site is green and track is less evident.
2003	The track is evident. A fenced yard with small shed is located on surrounding land to the east. Market Street is asphalt.
2006	No significant changes to the site.
2011	Bare areas are evident in the south east. The Balranald Multipurpose Service has replaced the Balranald hospitalon surrounding land to the south east. An asphalt carpark, access and gardens are located on surrounding land to the east. Additional shed built on surrounding land to the east.
2015	No significant changes to the site. Vegetation appears consistent.
2017	No significant changes to the site. Vegetation is green and consistent.
2020	Bare areas are evident in the south east. Hardstand is evident on surrounding land to the east.

Year	Comment
04/2010	Two soil stockpiles are evident on the western section of site. An access road to the Balranald Multipurpose Service construction site is evident in the west.
12/2019	Stockpiles are no longer evident. Construction of the Balranald Multipurpose Service has been completed. The investigation area appears uniform and partially vegetated, vegetation appears dry.
08/2022	The investigation area is well vegetated.

5.8.2 Google maps street view

5.8.3 Topographic maps

The current topographic map (Six Maps) depicts the site as vacant. Buildings with the notation multipurpose service are depicted to the south east.

5.8.4 Historical parish maps

The site is situated in the parish of Balranald, county of Caira and review of the applicable historical parish maps was undertaken. On the Town of Balranald and adjoining lands map dated 14th December 1971 and all available town maps the site carries the notation *Additions to Site for Hospital Dedicated 20th August '86*.

5.8.5 Title deeds

A search of title deeds was not considered necessary as historic parish maps provided information on historic site ownership.

5.9 Chronological list of site uses

Review of historical parish maps suggest the site was dedicated to the hospital in 1886. Review of aerial images suggest the site is vacant open space additional to the Balranald Hospital site. A track on the site provided access to the Balranald Ambulance station prior to the redevelopment of the hospital site which was completed in February 2011.

A construction access was located in the east and south of the site in 2010 during works on the Balranald Multipurpose Service.

Soil material from unknown sources but expected to originate from the Balranald hospital redevelopment was stockpiled on the site in 2010 site imagery. Two stockpiles are evident. Stockpiles are not evident on the site in subsequent aerial imagery.

No mines, sheep dips, mixing sheds, underground storage tanks (UST) or contaminating industrial activities have been identified as occurring on the site from the site history.

5.10 Heritage listings

The site is not listed on the following government heritage databases:

- Commonwealth Heritage List
- National Heritage List
- State Heritage Register
- Local Environmental Plan (Balranald LEP 2012)
- National Map Database

The site is identified as being within 1km of three general items on the Balranald LEP (2012) heritage map. The sites include Dippo Ceremonial Ground (I4), Aboriginal cemetery (I1) and fire station (I2). The historical sites are not expected to have impacted on the contamination status of the site.

No items listed on the Commonwealth Heritage List, National Heritage List or State Heritage Register are located within 1km of the site.

5.11 Buildings and infrastructure

No buildings or infrastursture are located on the investigation area.

5.12 Spills, losses or discharges

No records for spills or losses on the site were available. No records for discharges to land, water or air were available.

5.13 Relevant complaint history

None expected

5.14 **Previous investigations**

5.14.1 Envirowest Consulting Pty Ltd (2022) *Preliminiary contamination investigation, 49 Court Street, Balranald NSW* (R15067c)

A desktop investigation was undertaken by reviewing aerial photographs, available databases, published information and council records for evidence of contamination.

The site is maintained open space adjacent to the Balranald Multipurpose Service. Historical access tracks and a construction access were located in the eastern section. No agricultural land-use was identified from the site history.

Vehicles accessing the site may have leaked oils and fuels. No evidence of mines, sheep dips, mixing sheds or contaminating industrial activities were identified at the site from review of the site history.

Soil stockpiles were identified in 2010 from site imagery. Stockpiled soil appears to be retained on-site for leveling works. Material may be sourced from the Balranald hospital redevelopment and the contamation staust is unknown. Potential contamination sources are buildings materials and ash.

The report made the following recommendations:

The site is potentially suitable for the proposed land-use after investigation of the material used for site leveling is undertaken. Material investigations include visual inspections for ash and building materials including cement sheeting. Surface soil sampling in a systematic pattern over the material and analysis for heavy metals. If ash is visually identified analysis for PAH is recommended.

Visual inspections for surfce staining should be underataken from vehicles accessing the site.

5.15 Discussions with owner representative

Mr Gavin Llyod long term maintenance/ groundsman indicated the site was always vacant. A small area of building sand was identified in the inspection which was remnant from the hospital redevelopment activities. Mr Lloyd also reported excavated soil from the hospital was stockpile on the site and later levelled into a shallow mound. The excavated soil contained trace amounts of cobble sized concrete. No large pieces of concrete slab or footing wer reported to have been buried.

5.16 Historical neighbouring land-use

North –Market Street and Balranald SES rescue South –Court Street and Anzac Park

East – Balranald Health Service, carpark

West - Sturt Highway and Motel

Historical land-uses are not expected to have resulted in application contaminates to the site.

5.17 Contaminant sources

Contamination sources identified in the preliminary contamination assessment were:

- Oils, lubricants and fuels may have leaked from vehicles traversing the site.
- Soil material from unknown sources stockpiled on-site in 2010. Stockpiled material appears to be retained on-site for site leveling works.

5.18 Contaminants of concern

Based on historical activities the contaminants of concern associated with stockpile/fill material and vehiles are:

- Heavy metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury)
- Total recoverable hydrocarbons (TRH)
- Benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN)
- Polycyclic aromatic hydrocarbons (PAH)
- Asbestos

5.19 Integrity assessment

The site history was obtained from history review. The information is consistent with the current site condition and to the best of the assessor's knowledge is accurate.

6. Site condition and surrounding environment

6.1 Site inspection

The site was inspected by Greg Madafiglio of Envirowest Consulting Pty Ltd on 1 December 2022.

6.2 Land-use

The site was vacant maintained lawn on the day of inspection.

6.3 Current neighbouring land-use

- North Balranald Rescue Squad
- South ANZAC park
- East Balranald Multipurpose Service, carpark

West – Motel

6.4 Surface cover and vegetation

The surface was completed covered in vegetation with no bare areas. Species included a dominant fescue lawn with weeds including barley grass, wild oats, marshmellow, charlock, sowthistle, hoary cress, native medic, gazania garden escapes (flowering) and capeweed. The vegetation was partially desiccated due to a change in seasons.

6.5 Evidence of visible contamination

Trace concrete fragments was observed scattered on the soil surface in the mound are near the centre of the site. The concrete cobble are reminants contained in excavated soil from the old hospital infrastructure. The soil mound was up to 200mm above the surrounding areas and contained similar vegetation as the other areas on the site. No other building materials were observed in the mound soil. No evidence of contamination was observed in the mound or other areas on the site.

6.6 Topography

The morphology on-site is a lower slope to flat. The site is very gently inclined slope of 0 to 1% to the south west towards the Murrumbidgee River. Elevation is approximately 66 metres above sea level.

6.7 Soils and geology

The site is classified as Calcarosols under the Australian Soil Classification system. Calcarosols are composed of calcium carbonate throughout the A and B horizons, notably in the subsoil. Geotechcnial investigation on the site ave identied the locality is underlain by crystal sands which are source of Zurcon.

6.8 Water

6.8.1 Surface water

Surface water is expected to infiltrate or flow to the Balranald stormwater system. The southern part of the site is located 260m to the Murrumbidgee River. The Murrumbidgee River is a major irrigation, recreational and ecological water source which is considered moderately distruved due to impacts from agricultural runoff.

6.8.2 Groundwater

No groundwater bores were located on the site. One registered groundwater bore identified within 500m of the site on the NSW Government Water NSW website (2020). The intended purpose of the bore is test bore. A water-bearing zone (WBZ) was recorded from 18m to 21m with a standing water level of 12.6m.

No.	Date drilled	Location	SWL (m)	Use	Status
GW409409	2009	150m S	12.6	Test bore	-

6.9 Evidence of possible naturally occurring contaminants

No natural sources of PAH were identified.

The site is not mapped as an acid sulphate soil risk (State Government of NSW and Department of Planning, Industry and Environment 1998).

The site is not mapped as a geological unit with asbestos potential (State Government of NSW and Department of Regional New South Wales 2015).

6.10 Environmentally sensitive features or habitats

The site is identified as an area of groundwater vulnerability on the Groundwater Vulnerability Map (Balranald LEP 2010).

The site is located in the village of Balranald, NSW and no additional environmentally sensitive features or habitats are located on the site.

Land to the east and south of the site is identified as wetlands on the Waterways Map (Balranald LEP 2010).

6.11 Integrity assessment

The site history was obtained from a and history review. The information is consistent with the current site condition and to the best of the assessor's knowledge is accurate.

7. Conceptual site model

7.1 Contaminant sources

Contamination sources identified in the preliminary contamination assessment were:

- Oils, lubricants and fuels may have leaked from vehicles traversing the site.
- Stockpiled soil from the hospital redevelopment that has been retained on the site

7.2 Contaminants of concern

Based on historical activities the contaminants of concern associated with stockpiled/fill material and vehicles are:

- Heavy metals (arsenic, cadmium, chromium, copper, nickel, lead and zinc)
- Total recoverable hydrocarbons (TRH)
- Benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN)
- Polycyclic aromatic hydrocarbons (PAH)
- Asbestos

7.3 Potential receptors

The proposed land-use of the site is residential. The land-use history of the site is open space adjacent to the Balranald Multipurpose Service.

Human receptors include:

- Residents (adults and children)
- Visitors (adults and children)
- Site workers
- Construction workers
- Intrusive maintenance workers

Ecological receptors include

- Flora and fauna on the site and adjacent to the site
- Aquatic flora and fauna receptors off-site

7.4 Exposure pathways

Pathways for exposure to contaminants are:

- Dermal contact following soil disturbance
- Ingestion and inhalation after soil disturbance
- Surface water and sediment runoff into waterways
- Leaching of contaminants into the groundwater
- Direct contact of flora and fauna with the soil

7.5 Source receptor linkages

Potential source pathway receptor linkages are identified to enable evaluation of any adverse impact on human health or ecology.

The proposed land-use of the site is residential and human receptors to the investigation area are likely. Proposed users of the site may have a risk of exposure if contaminants are present and the soil is disturbed. Residents, visitors, construction workers and intrusive maintenance workers to the site may potentially be receptors to soil contaminants through direct contact to soil which includes ingestion and dermal contact.

Inhalation may occur as a result of soil disturbance and dust production. Major soil disturbance before and after the development of the site is considered unlikely. Soil disturbance during construction and development of the site is expected to be accompanied by erosion control measures which will reduce the incidence of dust production.

Vegetation on the site may be potential receptors to soil contamination through direct uptake of contaminants.

Disturbance of soil containing asbestos may result in release of asbestos fibres impacting on-site workers and the surrounding public.

The source receptor linkage to aquatic organisms and ecosystems is considered incomplete. The site is well vegetated and movement of sediments from the site in unlikely. During construction work it is expected that erosion control measures will be implemented and movement of sediment off site will be unlikely. Following development of the site it is expected that vegetation or hard surfaces will be re-established which will control sediment movement from the site.

The site is located in an area of groundwater vulnerability. Groundwater is not identified as a potential receptor to contamination. Contaminants are expected to originate from the soil surface or fill placed on the site for levelling and groundwater levels in the locality are expected at depths greater than 10m below the soil surface.

Source/contaminants	Transport	Potential exposure pathways	Receptors
 Stockpiled/fill material Heavy metals PAH Asbestos 	☐ Wind ☐ Sedimentation ☐ Groundwater ☐ Surface water ☐ Volatilisation	 ☑ Direct contact (ingestion and absorption) (human and environment) ☑ Inhalation □ Runoff □ Leaching 	 Residents (adults and children) Visitors (adults and children) Construction workers Intrusive maintenance workers Vegetation Aquatic receptors
□ Vehicles Heavy metals TRH BTEXN	☐ Wind ☐ Sedimentation ☐ Groundwater ☐ Surface water ☐ Volatilisation	 ☑ Direct contact (ingestion and absorption) (human and environment) ☑ Inhalation ☑ Runoff ☑ Leaching 	 Residents (adults and children) Visitors (adults and children) Construction workers Intrusive maintenance workers Vegetation Aquatic receptors

⊠Potential, □unknown/unlikely

8. Data quality objectives (DQO)

8.1 State the problem

Investigations are required to compete the data gaps from the preliminary contamintain investigation.

8.2 Identify the decision

The proposed land-use is residential. The decision problem is, do the levels of potential contaminants exceed the assessment criteria.

8.3 Identify the inputs decision

Investigation of the site is required to identify any potential contaminants from historical land-use. The inputs include:

- Field observation of aesthetic impacts or visible contamination
- Desccription of the soil profile
- Soil samples and analysis from the investigation area

8.4 Define the boundaries of the study

The investigation area is part 49 Court Street, Balranald NSW (Figure 2)

8.5 Develop a decision rule

Data collected for the purpose of the contamination investigation must be sufficiently accurate to be representative. The accuracy will be assessed by determination of:

- Current and historical land-use to describe potential contamination sources
- Site setting, potential receptors and pathways
- Soil samples to characterise potential contamination and analysis at accredited laboratories.

The adopted criteria is suitability for residential land-use and includes the thresholds listed in Schedule B1 of the NEPM (1999) *Guideline on Investigation Levels for Soil and Groundwater*. The data must be sufficient representatives to identify the extent of contamination and if further sampling and analysis is needed to delineate the nature and extent of contamination.

The decision rule for the investigation are:

- If the contamination levels were less than the adopted levels are potential risks low and acceptable
- If the levels were equal or greater that the investigations levels will exceedances affect the suitability for the proposed land-use.

8.6 Specify acceptable limits on the decision errors.

A decision error in the context of the decision rule would lead to either underestimation or over estimation of the risk level associated with the property. Decision errors include:

- Limitations in available site history information
- Constraints associated with the ability to access certain areas of a site
- Errors in the sampling plan
- Data quality including comparability, representativeness and accuracy for data collection and analysis
- Analytic data validation

Where sample analysis is undertaken the quality of the data collect was assessed on a range of factors including:

- Documentation and data completeness
- Reference to relevant guidance documents
- Consistency of methodology

- Data quality including comparability, representativeness and accuracy for data collection and analysis
- Analytical data validation
- The 95% upper confidence interval of average levels of samples collected is less than the threshold levels, the results are less than 250% of relevant thresholds and the standard deviation is less than 50% of the assessment criteria.

8.7 Optimize the design for obtaining data

The methodology present in sections 9 and 10 presents a framework for the contamination investigation which has been designed to meet the scope objectives and the nominated DQO.

Optimisation of the data collection process was informed by a review of historical information and observations made at the time of site inspection. The sampling was used to inform the potential contamination status of the site. The scope of work was undertaken to a level of accuracy and confidence in the ASC NEPM (NEPC 1999).

Analytes included heavy metals, TRH (C6-C40), BTEXN and PAH. Asbestos was identied by visual inspection for the presence of fibrous cement sheeting.

9. Sampling analysis plan and sampling methodology

9.1 Sampling strategy

9.1.1 Sampling design

Visual inspections were undertaken over the site for indicators of contamination.

A systematic (probabilistic) sampling pattern was adopted to assess the probable location of contamination on the general site.

A judgemental sampling pattern was adopted to assess potential areas of environmental concern at the location of the soil mound.

9.1.2 Sampling locations

A site inspection was underataken for evidence of contaminating activities. Boreholes were drilled on the site on an approximate 20m grid pattern to enable the soil profile to be described including the presence of fill (Figure 3). Soil samples were collected for analysis of heavy metals, TRH (C6-C40), BTEXN and PAH from each borehole at the 0-100mm depth.

9.1.3 Sampling density

The sampling density can detect a potential hot spot across the site with a radius of 12m at a 95% level of confidence.

The sampling frequency is greater than the minimum recommended by EPA (2022).

The number of samples collected from areas of environmental concern are expected to be sufficient to enable preliminary assessment.

9.1.4 Sampling depth

Boreholes were drilled on the site up to 300mm into natural soil. Soil samples were collected from the 0mm to 100mm soil layer to enable assessment of volatile hydrocarbons. One sample was collected from

Duplicaste samples were collected at the 0-100mm and 200-300mm depth for field screening with a PID for volatile organic compounds (VOC) with a Minirae photoionisation detector (PID)

9.2 Analytes

Soil samples collected from the site were evaluated for arsenic, cadmium, chromium, copper, lead, nickel, zinc, mercury, TRH (C6-C40), BTEXN and PAH. Duplicate samples were collected for evaluation of volatile organic compound (VOC) with a Minirae photoionization detector (PID).

9.3 Sampling methods

Soil samples were taken using a power auger and stainless steel hand shovel. Soil was collected at each individual sampling location below the vegetative and detrital layer and transferred directly to a solvent rinsed glass jar with a Teflon lid.

Tools were decontaminated between sampling locations to prevent cross contamination by: brushing to remove caked or encrusted material, rinsing with clean tap water and allowing to air dry or using a clean towel. Soil sampling protocols are outlined in Appendix 5.

Soil samples was collected with a power auger at the required depth and transferred to a solvent rinsed glass jar with a Teflon lid new glass container with a stainless-steel hand shovel. Duplicate samples were collected for field evaluation of VOC with a Minirae PID using the headspace method. The soil samples were placed into Ziploc plastic bags seal and vapour allowed to equalise over 5 to 10 minutes prior to piercing the bag and measuring the level of VOC.

10. Quality assurance and quality control

10.1 Sampling design

The sampling program is intended to provide data as to the presence and levels of contaminants.

Soil samples were collected on a systematic grid pattern of approximately 20 metres. This sampling density will enable the detection of an area with an elevated concentration on a radius of 12m with a 95% confidence level.

The number of sampling locations is greater than with the recommended density in the EPA sampling guidelines.

10.2 Field

The collection of samples was undertaken in accordance with accepted standard protocols (NEPC 1999).

Samples were analysed for arsenic, cadmium, chromium, copper, lead, nickel, zinc, mercury, TRH (C6-C40), BTEXN and PAH.

Sampling equipment was decontaminated between each sampling event. The appropriate storage conditions and duration were observed between sampling and analysis. A chain of custody form accompanied the samples to the laboratory (Appendix 4).

A single sampler was used to collect the samples using standard methods. Soil collected was a fresh sample from the auger. After collection the samples were immediately placed in new glass sampling jars and placed in a cooler.

One inter and intra lab duplicate sample were collected. A rinsate and trip blank were submitted for analysis. No field blank, or matrix spikes were submitted for analysis. Some samples from all batches did not contain contaminants which confirm the absence of cross contamination during transport and storage.

A field sampling log is presented in Appendix 2.

Sample	Decription	Depth	Analysis undertaken
ID	(Figure 3)	(mm)	-
BH1	BH1	50-100	Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn) mercury (Hg), Total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH)
BH2	BH2	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH3	BH3	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH4	BH4	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH5	BH5	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH6	BH6	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH7	BH7	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH8	BH8	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH9	BH9	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH10	BH10	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH11	BH11	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH12	BH12	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH13	BH13	50-100	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH
BH14	BH4	200-300	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH

Table 1.	Schedule of samples and analyses

10.3 Laboratory

Chemical analysis was conducted by SGS Laboratories, Alexandria, which is NATA accredited for the tests undertaken. The laboratories have quality assurance and quality control programs in place, which include internal replication and analysis of spike samples and recoveries. Triplicate samples were anlaysed at the laboratory of ALS Environmental as part of the quality control program.

Method blanks, matrix duplicates, rinates and laboratory control samples were within acceptance criteria. The quality assurance and quality control report is presented together with the laboratory report as Appendix 4.

10.4 Data evaluation

The laboratory quality control report indicates the data variability is within acceptable industry limits. The data is considered representative and usable for the purposes of the investigation. Data quality indicators are presented in Appendix 1.

11. Assessment criteria

The main reference for environmental site assessment in Australia is the ASC NEPM (NEPC 1999 rev 2013). This document includes criteria for use in evaluating potential risk to human health and ecosystems from chemical impacts, which are presented as generic investigation levels and screening levels appropriate to a Tier 1 risk-based assessment applicable for site assessment. The application of the investigation levels and screening levels is subject to a range of limitations, and their selection and use must be in the context of a conceptual site model (CSM) relating to the nature and distribution of impacts and potential exposure pathways.

The proposed land-use is residential and appropriate initial criteria are described in *Guideline on Investigation Levels for Soil and Groundwater* (NEPC 1999).

The criteria lists health investigation levels (HIL) for a range of land-uses. The appropriate initial comparison for the site is residential (HIL A).

The NEPC (1999) also provides health screening levels (HSL) for hydrocarbons in soil. The HSLs have been developed to be protective of human health for soil types, depths below surface and apply to exposure to hydrocarbons through the predominant vapour exposure pathway. The appropriate HSL for the site is listed in Table 5. TRH>16 have physical properties which make the TRH fractions non-volatiles and therefore these TRH fractions are not applicable for vapour intrusion.

Ecological investigation levels (EIL) have been developed for the protection of terrestrial ecosystems for selected metals and organic substances in the soil in the guideline (NEPC 1999). Ecological screening levels (ESL) assess the risk to terrestrial ecosystems from petroleum hydrocarbons in the soil. The EILs and ESLs consider the properties of the soil and contaminants and the capacity of the local ecosystem to accommodate increases in contaminant levels.

A soil sample was collected and has been assessed to provide an indication of typical cation exchange capacity (CEC), pH, organic carbon and clay content for soils on the site. The adopted CEC for determination of ecological investigation levels is 13.2cmol/kg, pH of 7.5 and organic carbon of 0.8 % (Appendix 4). Typical clay content for the site of 30% to 40% (eSPADEv2.2). The proposed land-use is residential. The contaminants have been identified in the soil for at least two years and are considered aged. The ASC NEPM EIL calculation spreadsheet was used to determine the EIL. Default values for ambient background concentrations were adopted.

Management limits have been developed to assess petroleum hydrocarbons following evaluation of human health and ecological risks (NEPC 1999). Management limits are applicable as screening levels after consideration of relevant ESLs and HSLs. The appropriate management limit for the site is listed in Table 4.

Analyte	Rationale	EIL (mg/kg)
Arsenic	Generic	100
Chromium (III)	Clay content 30%	580
Copper	CEC 13.2cmol/kg, pH 7.5, organic carbon 0.8%	220
Lead	Generic	1,100
Nickel	CEC 13.2cmol/kg	210
Zinc	CEC 13.2cmol/kg, pH 7.5	580
Naphthalene	Generic	170

Table 2. EIL Calculation sheet, residential land-use

Chromium is analysed as total chromium which is the sum of chromium (III) and chromium (VI). Chromium (VI) is a potential contaminant from industrial processes including ferrochrome production, electroplating, pigment production and tanning (WHO 1998). Chromium (VI) is reduced to chromium (III) when it comes into contact with organic matter in biota, soil and water. Chromium in the environment is present in the trivalent state (WHO 1998).

A	HIL A Residential	HSL A Residential (clay	EIL Residential	ESL Residential	Management limits
Analyte		soil)		(fine soil)	Residential
		0m to <1m		. ,	(fine soil)
Arsenic	100	-	100	-	-
Cadmium	20	-	-	-	-
Chromium (total)	100 ¹	-	580	-	-
Copper	6,000	-	220	-	-
Lead	300	-	1,100	-	-
Nickel	400	-	210	-	-
Zinc	7,400	-	580	-	-
Mercury	40	-	-	-	-
TRH (C6-C10)	-	50	-	180	800
TRH (>C10-C16)	-	280	-	120	1,000
TRH (>C16-C34)	-	NA	-	1,300	3,500
TRH (>C34-C40)	-	NA	-	5,600	10,000
Benzene	-	0.7	-	65	-
Toluene	-	480	-	105	-
Ethylbenzene	-	NL	-	125	-
Xylenes	-	110	-	45	-
Naphthalene	-	5	170	-	-
PAH (total)	300	-	-	-	-
Carcinogenic PAH	3	-	-	-	-
Benzo(a)pyrene	-	-	-	0.7	-

Table 3. Soil assessment criteria – Hydrocarbons (mg/kg) (NEPC 1999) for residential land-u	Table 3.	Soil assessment criteria -	- Hydrocarbons (mo	g/kg) (NEPC 1999) for residential land-use
---	----------	----------------------------	--------------------	------------------	----------------------------

HSL - health screening level, EIL - ecological investigation level, ESL - ecological screening level, NL - non limiting, NA - not applicable

The threshold for asbestos is nil on the surface.

Volatile organic compounds (VOC)	Description
<10ppm	Negligible
10 to 20ppm	Very low, laboratory analysis considered
20 to 60ppm	Low, laboratory analysis considered
60 to 300ppm	Moderate, laboratory analysis
>300ppm	Significant, laboratory analysis

Table 4. Generalised soil VOC criteria

12. Results and discussion

12.1 Visual inspection

The investigation area was vacant maintained lawn at the time of inspection. The historical land-use of the investigation area is vacant. Surface sand was located in former building sand stockpiles utalised in the construction of the adjacent Balranald Multipurpose Service.

The site was compiled vegetation Vegetation cover on the site was 100% dominated by fescue lawn and weeds. Trace concrete fragments were scattered across the investigation area. No cement sheeting or abestos containing material was observed on the surface or in the soil profiles.

No evidence of fill was observed except in the area with the mound at the location of the former stockpile foorprint. No significant VOC were observed from field screening of the samples with a PID. The level of VOC ranged from was 0 to 2ppm in all samples which is considered background.

A slight mound was identified in the former stockpile footprint from soil excavated from adjacent areas building works. Several small concrete cobbles and trace gravel was observed on the mound surface however the soil has similar appearance to natural. No other foreign materials were observed in the mound or other areas on the site. Surface sand was observed in a small area which was the remnant footprint from a stockpile previously used as part of buding activities. No other indicators of contaminating activities were identified at the investigation area.

12.2 Anaytical results

The level of all heavy metals, TRH, BTEXN and PAH in soil samples collected were less than adopted thresholds for human health and environment (Table 5 and 6). TRH(C16-C34) was detected at very low levels and below adopted threshold in soil samples BH6, BH7, BH8, BH9, BH10 and BH11 collected from the eastern section of the investigation area which may have previouls been used as a carpark. Other fractions of TRH, BTEXN and PAH were not observed in the soil samples.

Samples collected from the mound area BH4, BH12, BH13 has similar level of analytes as other samples indicated the soil is natural. No indictators of heavy metal or hydrocarbon contamination in the samples was indicated from the testing undertaken.

mSample ID	Depth (mm)	Arsenic	Cadmium	Chromium (total)	Copper	Lead	Nickel	Zinc	Mercury
BH1	0-100	3	<0.3	8.4	6.0	10	6.0	36	<0.05
BH2	0-100	6	<0.3	17	15	20	14	55	<0.05
BH3	0-100	3	<0.3	14	12	36	9.6	81	<0.05
BH4	0-100	2	<0.3	12	12	41	12*	84	0.08
BH5	0-100	3	<0.3	13	12	37	9.3	120	0.05
BH6	0-100	5	<0.3	17	14	15	13	65	<0.05
BH7	0-100	3	<0.3	12	12	19	8.9	74	<0.05
BH8	0-100	5	<0.3	18	14	15	14	41	<0.05
BH9	0-100	4	<0.3	15	13	13	11	51	<0.05
BH10	0-100	3	<0.3	14	11	12	10	32	<0.05
BH11	0-100	5	<0.3	14	14	10	11	43	<0.05
BH12	0-100	2	<0.3	11	10	25	7.1	51	<0.05
BH13	0-100	3	<0.3	11	11	27	8.4	51	<0.05
BH14	200-300	5	<0.3	15	14	15	13	35	<0.05
HIL A – R	esidential	100	20	100 ¹	6,000	300	400	7,400	40
EIL – Urba	an residential	100	-	580 ²	220	1,100	210	580	-

Table 5. Analytical results and threshold concentrations for metals (mg/kg)

¹ Chromium (VI), ² Chromium (III)

TILO	ет и та гті	((¹ f 1	
l able 6. Anal	ytical results and threshold	concentrations for h	ydrocarbons (mg/kg)

Sample ID	Depth (mm)	TRH (C6-10)	TRH (>C10-C16)	TRH (>C16-C34)	TRH (>C34-C40)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	РАН	Carcinogenic PAH	Benzo(a)pyrene
BH1	0-100	<25	<25	<90	<120	<0.1	< 0.1	<0.1	< 0.3	<0.1	<0.8	<0.3	<0.1
BH2	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH3	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH4	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH5	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH6	0-100	<25	<25	96	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH7	0-100	<25	<25	95	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH8	0-100	<25	<25	110	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH9	0-100	<25	<25	98	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH10	0-100	<25	<25	100	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH11	0-100	<25	<25	110	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH12	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH13	0-100	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
BH14	200-300	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.8	<0.3	<0.1
HSL A	– Residential (clay s	oil)											
	0m to <1m	50	280	NA	NA	0.7	480	NL	110	5	-	-	-
HIL A -	- Residential	-	-	-	-	-	-	-	-	-	300	3	-
EIL – U	Irban residential		-	-	-	-	-	-	-	170	-	-	-
ESL –	residential (fine soi)												
	()	180	120	1,300	5,600	65	105	125	45	-	-	-	0.7
Manag	ement limits – Resid	ential (fi			,								
		800	1,000	3,500	10,000	-	-	-	-	-	-	-	-
Ν	IA – not applicable, NL –	Not limiti		,	,								

NA - not applicable, NL - Not limiting

13. Site characterisation

13.1 Environmental contamination

Not applicable as no contamination was detected.

13.2 Chemical degradation production

Not applicable as no contamination was detected.

13.3 Exposed population

Not applicable as no contamination was detected.

14. Conclusions and recommendations

14.1 Summary

An inspection of the investigation area was made on 1 December 2022. The investigation area was vacant maintained lawn. The historical land-use of the investigation area is vacant. Building sand was stockpiled in a small area on the site. Soil from hospital excavations containing trace concrete rubble was stockpiled on the site during construction of the adjacent Balranald Multipurpose Health Service (MPS).

Vegetation cover on the site was complete and dominated by fescue lawn and weeds. Trace concrete cobbles were scattered across the investigation area. No asbestos containing materials were observed. A slight raised soil mound was identified in the former stockpile footprint. The mound is expected to be the levelled former stockpiles from hospital excavations. Surface sand was observed in a small area in the eastern section of the investigation area. No evidence of building, mines or contaminating activities were identified in the investigation area.

The investigation included sampling of the site at 13 loations over the 0.4ha. Boreholes were drilled to a depth of 300mm and the soil profile described. Soils samples were collected at the 0-100mm depth in each borehole and 200mm-300mm depth at one borehole. The soil samples were analysed for the contaminants of concern which included heavy metals, total petroleum hydrocarbons (TRH C6-C40) and polycyclic aromatic hydrocarbons (PAH).

The soil was is red brown clayey sand to 120-170mm over red brown sandy clay to 300mm. All soil profiles were uniform with dry soil on the surface and moist in the sandy clay subsoil. Some surface layers contain trace gravel and rock. Concrete cobbles were observed on the surface at several locations. It was reported some crushed concrete was buried in the site from past hospital footing excavations. The extent is not known however based on surface observations and boreholes not expected to be significant.

The soil sampling program did not detect elevated levels of assessed contamininats. The levels of all analytes were below adopted thesholds for residential land-use with access to the soil.

14.2 Assumptions in reaching the conclusions

It is assumed the sampling sites are representative of the site. An accurate history has been obtained and typical management practices were adopted.

14.3 Extent of uncertainties

The analytical data relate only to the locations sampled. Soil conditions can vary both laterally and vertically and it cannot be excluded that unidentified contaminants may be present. The sampling density was designed to detect a 'hot spot' with a radius of approximately 12m and with a 95% level of confidence.

14.4 Suitability for proposed use of the site

The investigation area is suitable for proposed residential land-use.

14.5 Limitations and constraints on the use of the site

No constraints are recommended.

14.6 Recommendation for further work

The data gaps have been completed and no significant uncertainties in the conceptual site model are present. The investigation area is suitable for proposed residential land-use.

15. Report limitations and intellectual property

This report has been prepared for the use of the client to achieve the objectives given the clients requirements. The level of confidence of the conclusion reached is governed by the scope of the investigation and the availability and quality of existing data. Where limitations or uncertainties are known, they are identified in the report. No liability can be accepted for failure to identify conditions or issues which arise in the future and which could not reasonably have been predicted using the scope of the investigation and the information obtained.

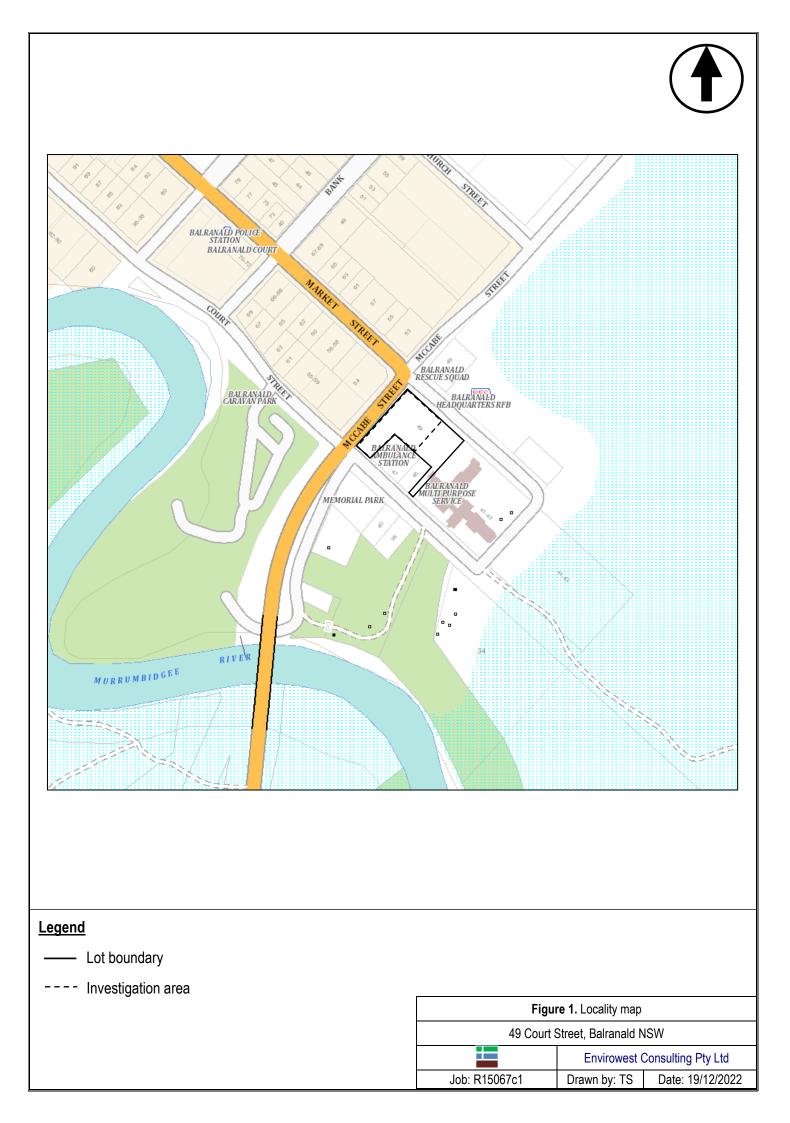
The investigation identifies the actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing is interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of the contamination, its likely impact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock or time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. It is thus important to understand the limitations of the investigation and recognise that we are not responsible for these limitations.

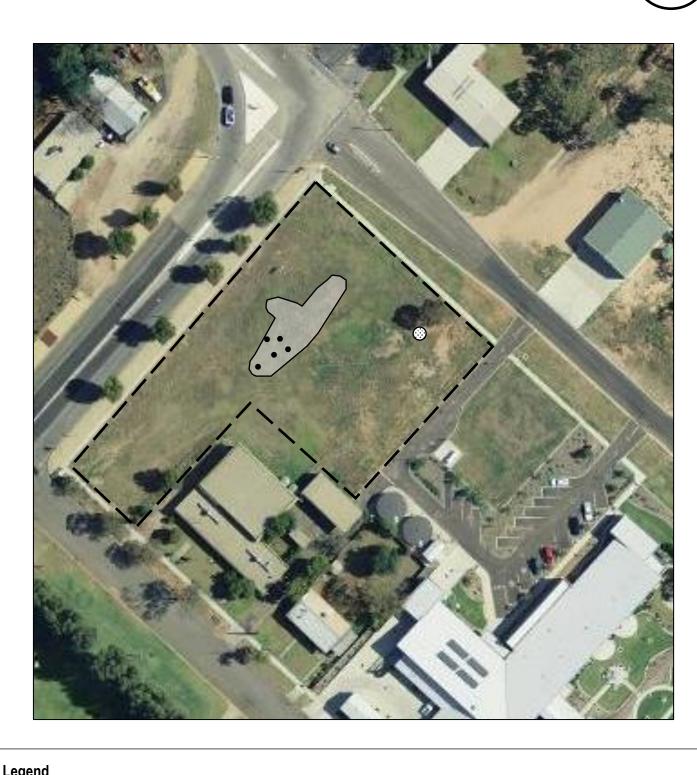
This report, including data contained and its findings and conclusions, remains the intellectual property of Envirowest Consulting Pty Ltd. A licence to use the report for the specific purpose identified is granted for the persons identified in that section after full payment for the services involved in preparation of the report. This report should not be used by persons or for purposes other than those stated and should not be reproduced without the permission of Envirowest Consulting Pty Ltd.

16. References

Environment Protection Authority (2020) *Consultants reporting on contaminated land* (NSW Environment Protection Authority, Chatswood)

EPA (2017) Contaminated Sites: Guidelines for the NSW Site Auditors Scheme (NSW Department of Environment and Conservation, Chatswood)


eSPADEv2.2 (https://www.environment.nsw.gov.au/eSpade2WebApp)


NEPC (1999 revised 2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (National Environment Protection Council Service Corporation, Adelaide)

State Government of NSW and Department of Regional New South Wales (2015) *Naturally occurring asbestos,* viewed December 2022 (datasets.seed.nsw.gov.au/dataset/naturally-occurring-asbestos)

State Government of NSW and Department of Planning, Industry and Environment (1998) *Acid sulphate soils risk,* viewed December 2022 (datasets.seed.nsw.gov.au/dataset/ acid-sulfate-soils-risk0196c)

Figures

<u>egenu</u>			
Investigation area			
Mound		Approximat	e Scale 1: 1000
		0 10	20 40m
Sand on surface			
Conrete fragment on surface	Figure 2. Investig	paiton area and surfa	ce dscriptions
	49 Cour	rt Street, Balranald N	ISW
		Envirowest	Consulting Pty Ltd
	Job: R15067c1	Drawn by: TS	Date: 19/12/2022

<u>Legend</u>

——- Investigation area

O Mound

⊗BH1 Borehole location

Approximate S	cale 1: 1	000
---------------	-----------	-----

10 20 40m

Figure 3. Site la	ayout and borehole	e locations
49 Court S	Street, Balranald N	ISW
	Envirowest	Consulting Pty Ltd
Job: R15067c	Drawn by: TS	Date: 19/11/2022

0

Figure 4. Photographs of the site

Looking south from Market Street

Looking east from Sturt Highway

Concrete fragment on surface

Looking north from Court Street

Looking east from the Sturt Highway

Slight mound in centre of the site.

Appendices

Appendix 1. Soil sampling protocols

1. Sampling

The samples will be collected from the auger tip, mattock, hand auger or excavator bucket immediately on withdrawal.

The time between retrieval of the sample and sealing of the sample container will be kept to a minimum.

The material will be collected using single use disposal gloves or a stainless-steel spade which represented material which has not been exposed to the atmosphere prior to sampling.

All sampling jars will be filled as close to the top as possible to minimise the available airspace within the jar.

2. Handling, containment and transport

Daily sampling activities will be recorded including sampling locations, numbers, observations, measurements, sampler, date and time and weather condition.

The sampling jars will be new sterile glass jars fitted with plastic lid and airtight Teflon seals, supplied by the laboratories for the purpose of collecting soil samples for analysis. Sample containers will be marked indelibly with the sample ID code to waterproof labels affixed to the body of the container.

All samples will be removed from direct sunlight as soon as possible after sampling and placed in insulated containers. Samples will be stored in a refrigerator at 4°C prior to transportation to the laboratory in insulated containers with ice bricks in accordance with AS4482.1.

Handling and transportation to the laboratory will be accompanied with a chain of custody form to demonstrate the specimens are properly received, documents, processed and stored.

Analyte	Maximum holding time
Metals	6 months
Mercury	28 days
Sulfate	7 days
Organic carbon	7 days
OCP, OPP, PCB	14 days
TRH, BTEX, PAH, phenols	14 days

Maximum holding time for extraction (AS4482.1) are:

3. Decontamination of sampling equipment

Sampling tools will be decontaminated between sampling locations by

- Removing soil adhering to the sampling equipment by scraping, brushing or wiping
- Washing with a phosphate-free detergent
- Rinsing thoroughly with clean water
- Repeating if necessary
- Collect rinsate per sampling time and preserve according to AS 2031.1
- Dry equipment with disposable towels or air

Appendix 2. Sample analysis, quality assurance and quality control (QAQC) report

1. Data quality indicators (DQI) requirements

1.1 Completeness

A measure of the amount of usable data for a data collection activity. Greater than 95% of the data must be reliable based on the quality objectives. Where greater than two quality objectives have less reliability than the acceptance criterion the data may be considered with uncertainty.

1.1.1 Field

Consideration	Requirement
Locations and depths to be sampled	Described in the sampling plan. The acceptance criterion is 95% data retrieved compared with proposed. Acceptance criterion is 100% in crucial areas.
SOP appropriate and compiled	Described in the sampling plan.
Experienced sampler	Sampler or supervisor
Documentation correct	Sampling log and chain of custody completed

1.1.2 Laboratory

Consideration	Requirement
Samples analysed	Number according to sampling and quality plan
Analytes	Number according to sampling and quality plan
Methods	EPA or other recognised methods with suitable PQL
Sample documentation	Complete including chain of custody and sample description
Sample holding times	Metals 6 months, OCP 14 days

1.2 Comparability

The confidence that data may be considered to be equivalent for each sampling and analytical event. The data must show little or no inconsistencies with results and field observations.

1.2.1 Field

Consideration	Requirement
SOP	Same sampling procedures to be used
Experienced sampler	Sampler or supervisor
Climatic conditions	Described as may influence results
Samples collected	Sample medium, size, preparation, storage, transport

1.2.2 Laboratory

Consideration	Requirement	
Analytical methods	Same methods, approved methods	
PQL	Same	
Same laboratory	Justify if different	
Same units	Justify if different	

1.3 Representativeness

The confidence (expressed qualitatively) that data are representative of each media present on the site.

1	1.3.	1	Field	
	~		4.	

Consideration	Requirement
Appropriate media sampled	Sampled according to sampling and quality plan or in accordance with
	the EPA (1995) sampling guidelines.
All media identified	Sampling media identified in the sampling and quality plan. Where surface water bodies on the site sampled.

1.3.2 Laboratory

Consideration	Requirement	
Samples analysed	Blanks	

1.4 Precision

A quantitative measure of the variability (or reproduced of the data). Is measured by standard deviation or relative percent difference (RPD). An RPD analysis is calculated and compared to the adopted criteria of 30%.

Data not conforming to the acceptance criterion will be examined for determination of suitability for the purpose of site characterisation.

1.4.1 Field

Consideration	Requirement
Field duplicates	Frequency of 5%, results to be within RPD or discussion required
-	indicate the appropriateness of SOP

1.4.2 Laboratory

Consideration	Requirement			
Laboratory duplicates	Frequency of 5%, results to be within RPD or discussion required.			
Field duplicates	Frequency of 5%, results to be within RPD or discussion required. Inter laboratory duplicates will be one sample per batch.			
Laboratory prepared volatile trip spikes	One per sampling batch, results to be within RPD or discussion required			

1.5 Accuracy

A quantitative measure of the closeness of the reported data to the true value.

1.5.1 Field

Consideration	Requirement			
SOP	Complied			
Inter laboratory duplicates	Frequency of 5%.			
	Analysis criterion			
	60% RPD for levels greater than 10 times the PQL			
	85% RPD for levels between 5 to 10 times the PQL			
	100% RPD at levels between 2 to 5 times the PQL			
	Absolute difference, 3.5 times the PQL where levels are, 2 times PQL			

1.5.2 Laboratory

Recovery data (surrogates, laboratory control samples and matrix spikes) data subject to the following control limits:

- 60-140% acceptable data
- 20-60% discussion required, may be considered acceptable
- 10-20% data should considered as estimates
- 10% data should be rejected

Consideration	Requirement
Field blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Rinsate blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Method blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Matrix spikes	Frequency of 5%, results to be within +/-40% or discussion required

Matrix duplicates	Sample injected with a known concentration of contaminants with tested. Frequency of 5%, results to be within +/-40% or discussion required
Surrogate spikes	QC monitoring spikes to be added to samples at the extraction process in the laboratory where applicable. Surrogates are closely related to the organic target analyte and not normally found in the natural environment. Frequency of 5%, results to be within +/-40% or discussion required
Laboratory control samples	Externally prepared reference material containing representative analytes under investigation. These will be undertaken at one per batch. It is to be within +/-40% or discussion required
Laboratory prepared spikes	Frequency of 5%, results to be within +/-40% or discussion required

2. Laboratory analysis summary

.

One analysis batch was undertaken over the additional investigation program. Samples were collected on 1 December 2022. A total of 14 samples were submitted for analytical testing. The samples were collected in the field by an environmental scientist from Envirowest Consulting Pty Ltd, placed into laboratory prepared receptacles as recommended in NEPM (1999). The samples preservation and storage was undertaken using standard industry practices. A chain of custody form accompanied transport of the samples to the laboratory.

The samples were analysed at the laboratories of SGS laboratories, Alexandria NSW which is National Association of Testing Authorities (NATA) accredited for the tests undertaken. The analyses undertaken, number of samples tested and methods are presented in the following tables:

Sample id.	Number of samples	Duplicate	Analyses		Date collected	Substrate	Laboratory report
BH1, BH2,BH3, BH4, BH5, BH6, BH7, BH8, BH9, BH10, BH11, BH12, BH13, BH14	14	2	Arsenic (As), cadmium (C chromium (Cr), copper (C (Pb), nickel (Ni), zinc (Zn (Hg), Total recoverable h (TRH), benzene, toluene, ethylbenzene, xylenes ar naphthalene (BTEXN), po aromatic hydrocarbons (F	Cu), lead) mercury ydrocarbons , nd olycyclic	01/12/2022	Soil	SE240159
Analytical methods							
Analyte		Extrac	tion	Laborat	ory methods		
Metals		USEP	A 200.2 Mod		SEPA SW846-6	6010	
Chromium (III)		-			3500 CR-A&B SW846-3060A	& 3120 a	nd
Chromium (VI)		USEP	A SW846-3060A	USEPA	SW846-3060A		
Mercury		USEP	A 200.2 Mod	APHA 3	112		
TRH(C6-C9)		USPE/	A SW846-5030A	USPEA	SW 846-8260B		
11(1(00-03)		T	er extraction of solids	LISEPA	SW 846-8270B		
TRH(C10-C40), PA	H	Iumbi	er extraction of solids				
· · · ·	H		er extraction of solids		SW 846-8270B		
TRH(C10-C40), PA	Η	Tumbl		USEPA USEPA			

3. Field quality assurance and quality control

One intra laboratory duplicate and one inter laborator duplicate sample were collected for the investigation. The frequency was 5% which was in accordance with the recommended frequency of 5%.

Table A1 outlines the samples collected and differences in replicate analyses. Relative differences were deemed to pass if they were within the acceptance limits of +/- 30% for replicate analyses or less than 5 times the detection limit.

Field duplicate frequency

Sample id.	Number samples	of	Duplicate	Frequency (%)	Date collected	Substrate	Laboratory report
BH1, BH2,BH3, BH4, BH5, BH6, BH7, BH8, BH9, BH10, BH11, BH12, BH13, BH14	14		2	14	01/12/2022	Soil	SE235564

	BH4, BHDA						
	BH4	BHDA	Relative difference (%)	Pass/Fail			
Arsenic	2	2	0	Pass			
Cadmium	<0.3	<0.3	NA	-			
Chromium	12	12	0	Pass			
Copper	12	12	0	Pass			
Lead	41	34	19	Pass			
Nickel	8.6	8.3	4	Pass			
Zinc	84	81	4	Pass			
Mercury	0.08	0.05	46	Pass*			
Benzene	<0.1	<0.1	NA	-			
Toluene	<0.1	<0.1	NA	-			
Ethlbenzene	<0.1	<0.1					
Xylenes	<0.3	<0.3	NA	-			
Napthalene	<0.1	<0.1	NA	-			
TRH C6-C9	<20	<20	NA	-			
TRH C10-40	<210	<210	NA	-			
PAH (total)	<0.8	<0.8	NA	-			

NA – relative difference unable to be calculated as results are less than laboratory detection limit, 1 Result less than 5 times the detection limit, 2 where an exceedance has occurred the higher result was used in the results

Table A2. Relative differences for inter laboratory duplicates

	BH4, BH4(ALS)			
	BH4	BH4(ALS)	Relative difference (%)	Pass/Fail
Arsenic	2	<5	NA	-
Cadmium	<0.3	<1	NA	-
Chromium	12	15	22	Pass
Copper	12	15	22	Pass
Lead	41	33	22	Pass
Nickel	8.6	12	33	Fail
Zinc	84	80	5	Pass
Mercury	0.08	<0.1	NA	-
Benzene	<0.1	<0.2	NA	-
Toluene	<0.1	<0.5	NA	-
Ethlbenzene	<0.1	<0.5	NA	-
Xylenes	<0.3	<0.5	NA	-
Napthalene	<0.1	1	NA	-
TRH C6-C9	<20	<10	NA	-
TRH C10-40	<210	<50	NA	-
PAH (total)	<0.8	<0.5	NA	-

NA – relative difference unable to be calculated as results are less than laboratory detection limit, ¹ Result less than 5 times the detection limit, ² where an exceedance has occurred the higher result was used in the results

Table A3. Trip blank and rinsate

Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
Trip blank	<5mg/kg	<1 mg/kg	<2 mg/kg	<5 mg/kg	<5 mg/kg	<2 mg/kg	<5 mg/kg	<0.1 mg/kg
Rinsate	<1µg/L	<0.1 µg/L	<1 µg/L	<1 µg/L	<1 µg/L	<1 µg/L	<5 µg/L	-

Trip blanks and rinsate results are within acceptable limits and confirmed sample integrity. Additionally:

- The fieldwork was completed within a short time period and consistent methods were used for soil sampling.
- Soil samples were placed in insulated cooled containers after sampling to ensure preservation during transport and storage.
- The samples were placed in single use jars using clean sampling tools and disposable gloves from material not in contact with other samples. This reduces the likelihood of cross contamination.
- Samples in the analysis batch contain analytes below the level of detection. It is considered unlikely that contamination has occurred as a result of transport and handling.

4. Laboratory quality assurance and quality control

Sample holding times are recommended in NEPM (1999). The time between collection and extraction was generally less than the criteria listed below:

Analyte	Maximum holding time	
Metals	6 months	
Mercury	28 days	
BTEXN, TRH, PAH, OCP, OPP	14 days	

The laboratory interpretative reports are presented with individual laboratory report. Assessment is made of holding time, frequency of control samples and quality control samples. The laboratory report also contains a detailed description of preparation methods and analytical methods.

The results, quality report, interpretative report and chain of custody are presented in the attached appendices. The quality report contains the laboratory duplicates, spikes, laboratory control samples, blanks and where appropriate matrix spike recovery (surrogate).

5. Data quality indicators (DQI)

5.1 Completeness

A measure of the amount of usable data for a data collection activity (total to be greater than 90%)

Consideration	Accepted	Comment
Locations to be sampled	Yes	In accordance with sampling methodology, described in the report.
SOP appropriate and compiled	Yes	In accordance with sampling methodology
Experienced sampler	Yes	Environmental scientist
Documentation correct	Yes	Chain of custody completed

5.1.2 Laboratory

Consideration	Accepted	Comment	
Samples analysed	Yes	In accordance with chain of custody and analysis plan.	
Analytes	Yes	In accordance with chain of custody and analysis plan.	
Methods	Yes	Analysed in NATA accredited laboratory with recognised methods and suitable PQL	
Sample documentation	Yes	Completed including chain of custody and sample results and quality results	
Sample holding times	Yes	Metals < 6 months Mercury < 28 days OCP, OPP, PAH, TRH, PCB, BTEXN < 14 days	

5.2 Comparability

The confidence that data may be considered to be equivalent for each sampling and analytical event.

5.2.1 Field

J.Z.I FIEIU		
Consideration	Accepted	Comment
SOP	Yes	Same sampling procedures used and sampled on one date
Experienced sampler	Yes	Experienced environmental scientist
Climatic conditions	Yes	Sampling log
Samples collected	Yes	Suitable size and storage

5.2.2	Laboratory	
Consideration	Accepted	Comment
Analytical methods	Yes	Same methods all samples
PQL	Yes	Suitable for analytes
Same laboratory	Yes	-
Same units	Yes	-

5.3 Representativeness

The confidence (expressed qualitatively) that data are representative of each media present on the site.

5.3.1 Field

Consideration	Accepted	Comment
Appropriate media sampled	Yes	Sampled according to sampling and quality plan
All media identified	Yes	Soil sampling media identified in the sampling and quality plan

5.3.2 Laboratory

Consideration	Accepted	Comment
Samples analysed	Yes	Undertaken in NATA accredited laboratory. Samples in the analysis batch contain analytes below the level of detection. It is considered unlikely that contamination has occurred as a result of transport and handling.

5.4 Precision

A quantitative measure of the variability (or reproduced of the data)

5.4.1 Field

Consideration	Accepted	Comment
SOP	Yes	Complied
Field duplicates	Yes	Collected

5.4.2 Laboratory

Consideration	Accepted	Comment
Laboratory duplicates	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Field duplicates (intra and inter laboratory)	No	Frequency of 5%, results to be within +/-30% or discussion required. Exceedances occur, not expected to impact results. Higher results reported.
Laboratory prepared volatile trip spikes	NA	Frequency of 5%, results to be within +/-30% or discussion required.

5.5 Accuracy

A quantitative measure of the closeness of the reported data to the true value

5.5.1	Field
J.J. I	I IEIU

Consideration	Accepted	Comment	
SOP	Yes	Complied	
Field blanks	Yes	Collected	

5.5.2 Laboratory

Consideration	Accepted	Comment
Method blanks	Yes	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Matrix spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Matrix duplicates	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Surrogate spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Laboratory control samples	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Laboratory prepared spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required

No trip blanks, field spikes or sample rinsates were submitted for analysis. This is not considered to create significant uncertainty in the analysis results because of the following rationale:

- The fieldwork methods used for soil sampling were consistent throughout the project with all in situ samples collected from material which had not been subject to exposure.
- The fieldwork was completed within a short time period and consistent methods were used for soil sampling.
- Soil samples were placed in insulated cooled containers as quickly as possible, with the containers filled to minimize headspace. The sample containers were sealed immediately after the sample was collected and chilled in an esky containing ice.
- The samples were stored in a refrigerator and transported with ice bricks to ensure preservation during transport and storage.
- The samples were placed in single use jars using clean sampling tools and disposable gloves from material not in contact with other samples. This reduces the likelihood of cross contamination.
- Samples in the analysis batches contained analytes below the level of detection. It is considered unlikely that contamination has occurred as a result of transport and handling.

6. Conclusion

All media appropriate to the objectives of this investigation have been adequately analysed and no area of significant uncertainty exist. It is concluded the data is usable for the purposes of the investigation.

Appendix 3. Field sampling log

Sampling log Client	CWPM	
Contact	Steven Bird	
Job number	15067	
Location	49 Court Street, Balranal	d
Date	1 December 2022	
Investigator	Greg Madafiglio	
Weather condi	tions Warm sunny	

Sample ID	Matrix	Date	Analysis required	Observations/comments
BH1	Soil	1/12/2022	Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn) mercury (Hg), Total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH)	0-100mm
BH2	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH3	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH4	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH4(200)	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	200-300mm
BH5	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH6	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH7	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH8	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH9	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH10	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH11	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH12	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BH13	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	0-100mm
BHDA	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	Duplicate of BH4
Rinsate	Water	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg	0-100mm
BH4	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, TRH, BTEXN, PAH	Inter lab duplicate to ALS
Blank	Soil	1/12/2022	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg	

Appendix 4. Boreholgs

Envirow	Envirowest Consulting Process			9 Came		t Consulting ce Orange NSW 4954	Engineering Log - Borehole Borehole No: BH1				
UTM Easting Northing RL Total Dept	: : 0.0 : 0.0 : N/A :h : 0.3m			Drille Logg	er Rig er Supplier ged By ewed By	: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Number Client Project Location	: CWPM : Balranald : 49 Court Street, Balranald NSW			
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples samble samble	Remark		
			Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, rec brown, medium grained, with medium sized gravel, dry, (granite).	i D	BH1			
		0. <u>19</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ≈ PL				
		- 0.5									

Enviro	owest Consult	ing PTY LTD		9 Came		t Consulting ce Orange NSW I 4954	Engineering Log - Borehole Borehole No: BH2			
UTM Easting Northing RL Total Dep	: : 0 : 0 : N/A pth : 0.3m			Drille Logg	er Rig er Supplier ged By ewed By	: Hand auger r : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Numbe Client Project Location	: CWPM : Bairanaid	reet, Balranald NSW	
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Sample sample sample	Remark	
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, dry,	D	BH2		
		0. <u>15</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ~ PL			
		- 0.5				BH2 Terminated at 0.3m				

Enviro	west Consult	ting PTYLTD		9 Came		t Consulting ce Orange NSW I 4954	Engineering Log - Borehole Borehole No: BH3			
TM asting orthing L otal Dep	: : 0 : N/A oth : 0.3m		I	Driller Rig Driller Supplier Logged By Reviewed By Date		: Hand auger er : Envirowest Consulting : Greg Madafiglio : : : 01/12/2022	Job Number Client Project Location	: CWPM : Bairanaid : 49 Court Street, Bairanaid NSW		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Environmental sample sample	Кетақ	
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, fine grained, dry,	D	BH3	-	
		0.2	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ≈ PL			
		-				BH3 Terminated at 0.3m				
		- 0.5								
		-								
		-								

20/22, 1	11:24 A	M				15067	_Balranalo	Ł	
			_	Envi	rowes	t Consulting		Engin	eering Log - Borehole
Envirowe	vest Consult				eron Pla : 02 6361	ce Orange NSW I 4954		Bor	ehole No: BH4
UTM Easting Northing RL Total Deptf	: : 0 : N/A : 0.3m			Drille Loge	er Rig er Supplier ged By ewed By	: Hand auger r : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Numb Client Project Location	er : 15067 : CWPM : Balranald : 49 Court St Samples	treet, Balranald NSW
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Environmental	Жешах
		_	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, fine grained, dry, (natural appearance with concrete ranging in size from 0.01mm to 0.1mm. no other foreign materials) .	D	BH4	
		0. <u>18</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl, (white mottles) .	w ≈ PL		
		- 0.5							

Enviro	owest Consult	ting PTYLTD		9 Came		t Consulting ce Orange NSW 1 4954			eering Log - Borehole ehole No: BH5
UTM Easting Northing RL Total De	: :0 :0 :N/A pth:0.3m			Drille Loge	er Rig er Supplier ged By ewed By	: Hand auger r : Envirowest Consulting : Greg Madafiglio : : : 01/12/2022	Job Numbe Client Project Location	: CWPM : Balranald	reet, Balranald NSW
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples samble samble	Remark
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, dry,	D	BH5	
		-	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≃ pl,	w ≈ PL		
		- 0.5				BH5 Terminated at 0.3m			

Envirowes	st Consulti	ing PTY LTD		9 Cam		t Consulting ce Orange NSW 1 4954			eering Log - Borehole ehole No: BH6	
asting	: : 0 : N/A : 0.3m			Driller Rig Driller Supplier Logged By Reviewed By Date		: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Number Client Project Location	r : 15067 : CWPM : Balranald : 49 Court Street, Balranald NSW Samples		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Environmental sample	r Remark	
		0.15	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, trace medium sized gravel, dry, (glassy mineral) .	D	BH6		
		-	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≃ pl,	w≈PL			
		- 0.5				BH6 Terminated at 0.3m				
		-								
		-								
		-								

Enviro	owest Consult	ing PTYLTD		9 Came		t Consulting ce Orange NSW 1 4954		Engineering Log - Borehole Borehole No: BH7		
UTM Easting Northing RL Total Dep	: : 0 : 0 : N/A pth : 0.3m			Drille Loge	er Rig er Supplie ged By ewed By	: Hand auger r : Envirowest Consulting : Greg Madafiglio : : : 01/12/2022	Job Numbe Client Project Location	: CWPM : Balranald	treet, Balranald NSW	
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples sample sample	Remark	
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, trace medium sized gravel, dry,	D	BH7		
		0. <u>15</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ≈ PL			
		- 0.5				BH7 Terminated at 0.3m				

Envirow	est Consult	ting PTYLTD		9 Came		t Consulting ce Orange NSW I 4954		Engineering Log - Borehole No: BH8	
ITM Easting Iorthing RL Total Dept	: : 0 : 0 : N/A h : 0.3m			Driller Rig Driller Supplier Logged By Reviewed By Date		: Hand auger : Envirowest Consulting : Greg Madafiglio : : : 01/12/2022	Job Number Client Project Location	: CWPM : Balranald : 49 Court Street, Balranald NSW	
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples	Remark
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, trace medium sized gravel, dry,	D		
		0 <u>.15</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≃ pl,	w≈PL		
		-				BH8 Terminated at 0.3m			
		- 0.5							
		-							
		-							
		-							

/20/22,	11:24 A	AM				1506	67_Balranald			
Enviro	owest Consult	ting PTYLTD		9 Cam		t Consulting ce Orange NSW 1 4954			eering Log - Borehole rehole No: BH9	
JTM Easting Northing RL Fotal Dej	: : 0 : 0 : N/A pth : 0.3m			Drill Log	er Rig er Supplie ged By iewed By	: Hand auger r : Envirowest Consulting : Greg Madafiglio : : : 01/12/2022	Job Number Client Project Location	r : 15067 : CWPM : Balranald : 49 Court Street, Balranald NSW Samples		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Environmental sample sample sample	- Remark R	
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, re brown, medium grained, trace medium sized gravel, moist white/grey gravel) .	ed M	BH9	On edge of carpark, bore, water runoff near electricity poles *4	
		-	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≃ pl,	w ≈ PL			
		-				BH9 Terminated at 0.3m				
		- 0.5								
		-								
		-								
		-								

			9 Came		Consulting e Orange NSW 4954	Engineering Log - Borehole Borehole No: BH10			
rM : Isting : 0 Prthing : 0 - : N/A tal Depth : 0.3m			Drille Logg	er Rig er Supplier ged By ewed By	: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Number Client Project Location	: CWPM : Bairanaid : 49 Court Street, Bairanaid NSW		
Drilling Method Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples Ruviconmeental sample Buble	Remark	
	-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, re brown, medium grained, trace medium sized gravel, dry, (woodchip) .	d D	BH10		
	0.2	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ≈ PL			
	- 0.5								

	owest Consult					t Consulting		Engine	eering Log - Borehole
Enviro	owest Consult		-		eron Pla : 02 636′	ce Orange NSW I 4954		Bor	ehole No: BH11
UTM Easting Northing RL Total Dep	: : 0 : 0 : N/A pth : 0.12m	I		Drill Log	er Rig er Supplier ged By ewed By	: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Numbe Client Project Location	: CWPM : Balranald : 49 Court St	reet, Balranald NSW
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples Environmental sample	Remark
		-	Natural		SC	Clayey SAND (SC) : dense, medium plasticity, red brown, medium grained, trace fine sized gravel, dry,	D	BH11	
		- 0.5				BH11 refusal at 0.12m (Hard)			

Envirowest Consulting Process				Envirowest Consulting 9 Cameron Place Orange NSW Phone: 02 6361 4954			Engineering Log - Borehole Borehole No: BH12			
Easting Northing RL	: 0			Drille Logg	er Rig er Supplier ged By ewed By	: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Number Client Project Location	: CWPM : Balranald : 49 Court Street, Balranald NSW		
Drilling Method	Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Samples sample samble samble un samble	Remark	
		-	Natural		SC	Clayey SAND (SC) : medium dense, medium plasticity, red brown, medium grained, trace medium sized gravel, dry,	D	BH12		
		- 0. <u>23</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, w ≈ pl,	w ≈ PL			
		- 0.5								
		-								

rest Consult	ting PTYLTD		Envirowest Consulting March 9 Cameron Place Orange NSW Phone: 02 6361 4954					ering Log - Borehole hole No: BH13
: : 0 : 0 : N/A h : 0.3m			Drille Logo Revi	er Supplier ged By ewed By	: Hand auger : Envirowest Consulting : Greg Madafiglio : : 01/12/2022	Job Number Client Project Location	: CWPM : Balranald : 49 Court Stre	eet, Balranald NSW
Water	Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Environmental sample sample sample	Remark
	-	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown, medium grained sand, trace medium sized gravel, w ≈ pl, (some rocks 0.28mm) .	w≈PL	BH13	
	0. <u>28</u>	Natural		CL-CI	Sandy CLAY (CL-CI) : firm, low to medium plasticity, red brown light brown, medium grained sand, w ≈ pl, BH13 Terminated at 0.3m	W ≈ PL		
	-							
	- 0.5							
	-							
	-							
	-							
	-							
	: :0 :N/A h:0.3m	: : : : : : N/A n: : N/A n: : N/A n: :	: : : : : N/A	9 Came Phone: 9 Came Phone: 0 Drille 1 O Logg 1 N/A Revi n: 0.3m Date 0.3m Date 0.3m Antural	9 Cameron Plac Phone: 02 6361 : Driller Rig : Driller Rig : Driller Rig : Driller Rig : NA n: 0.3m : Differ Rig : Natural : 0.28 Natural CL-CI	Prome: 02 6361 4954 :: Driller Rig : Hand auger :: Driller Rig : Envirowest Consulting :: Logged By :: Greg Madafiglio :: NA Reviewed By :: 0.3m Date :: 0.3m Date :: 0.3m Date :: 0.3m Date :: 0.3m CL-CI Sandy CLAY (CL-CI): frm, low to medium plasticity, red :: 0.28 :: 0.28 :: 0.28 :: OL-CI :: Sandy CLAY (CL-CI): frm, low to medium plasticity, red :: 0.28 :: 0.28	9 Cameron Place Orange NSW Priore: 22 6361 4954 :: Driller Rig : Hand auger Job Number :: Driller Rig : Envirowest Consulting Client :: NA Reviewed By :: Logged By : Greg Madafiglio :: 0.3m Date : Ol/1/2/2022 Location :: 0.3m Date : Ol/1/2/2022 .: 0.3m CL-Cl Sandy CLAY (CL-Cl): frm, low to medium plasticity, red w = PL .: 0.3m CL-Cl Sandy CLAY (CL-Cl): frm, low to medium plasticity, red w = PL .: 0.28 Natural CL-Cl Sandy CLAY (CL-Cl): frm, low to medium plasticity, red w = PL .: 0.28 Natural CL-Cl Sandy CLAY (CL-Cl): frm, low to medium plasticity, red w = PL .: .: Natural CL-Cl Sandy CLAY (CL-Cl): frm, low to medium plasticity, red	B Cameron Place Orange NSW Priors: 02 6361 4953 Generon Place Orange NSW Priors: 02 6361 4953 Jonnerots 20 6361 4954 Jonnerots 20 6361 4954 Jonnerots 20 6000 Jonnerots 2

Appendix 5.

Envirowest Consulting Pty Ltd ABN 18 103 955 246 trading as

Envirowest Testing Services

• 9 Cameron Place, PO Box 8158, Orange NSW 2800 • Tel (02) 6361 4954 •

Email admin@envirowest.net.au
 Web www.envirowest.net.au

Environmental Geotechnical Asbestos Services

CALIBRATION CERTIFICATE

Equipment Description

Brand: RAE Systems

Type: MiniRAE Model: PGM 7350

Item	Test	Pass	Fail	Comments
Dotton/	Type (NiCd, NiMH, Dry cell, Li lon)	\checkmark		NiCd
Battery	Charger/Ext power			
Switch/keypad	Operation	\checkmark		
Display	Operation	\checkmark		
Filters	Condition			
	Motor	\checkmark		
Dumn	Bearings			
Pump	Flow	\checkmark		
	Valves, Diaphragm			
PCB/Electronics	Condition			
Connectors	Condition	\checkmark		
	PID lamp	\checkmark		
Sensors	PID sensor			
	THP sensor			
Alormo	Audible			
Alarms	Alarm code	\checkmark		Standard
Other tests				

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specification:

Sensor	Date	Calibration gas and concentration	CF	CV	Certified	Gas bottle No.	Instrume reading	Instrument reading		
							before	after		
PID		Isobutylene 100ppm	1		Internal	80	100	100		

CF=conversion factor, C=compensated value; CV=CF*span gas

Calibrated by: G Madafiglio

Signed: Colladefiglies Date: 12 November 2022

Next Calibration due on: 12 November 2023

Appendix 6. Soil analysis results – SGS report number SE240159, ALS Environmental report number ES2243874 and chain of custody forms

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Greg Madafiglio	Manager	Huong Crawford
Client	ENVIROWEST CONSULTING PTY LIMITED	Laboratory	SGS Alexandria Environmental
Address	PO BOX 8158 ORANGE NSW 2800	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 63614954	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	greg@envirowest.net.au	Email	au.environmental.sydney@sgs.com
Project	15067	SGS Reference	SE240159 R0
Order Number	15067	Date Received	6/12/2022
Samples	16	Date Reported	14/12/2022

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Teresa NGUYEN Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

kinter

Ly Kim HA

Organic Section Head

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Shane MCDERMOTT

Inorganic/Metals Chemist

ion

www.sgs.com.au

Member of the SGS Group

SE240159 R0

VOC's in Soil [AN433] Tested: 9/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	1/12/2022 SE240159.001	1/12/2022 SE240159.002	1/12/2022 SE240159.003	1/12/2022 SE240159.004	1/12/2022 SE240159.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012			- 3012
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE240159 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 9/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	1/12/2022 SE240159.001	1/12/2022 SE240159.002	1/12/2022 SE240159.003	1/12/2022 SE240159.004	1/12/2022 SE240159.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 9/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.001	SE240159.002	SE240159.003	SE240159.004	SE240159.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	76	51	<45	69
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	51
TRH C29-C36	mg/kg	45	80	70	90	76	65
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	96	95	110	98	100
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	120
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH11	BH12	BH13	BH14	BHDA
PARAMETER	UOM	LOR	SOIL - 1/12/2022 SE240159.011	SOIL - 1/12/2022 SE240159.012	SOIL - 1/12/2022 SE240159.013	SOIL - 1/12/2022 SE240159.014	SOIL - 1/12/2022 SE240159.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	52	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	73	50	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	110	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	120	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 9/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.001	SE240159.002	SE240159.003	SE240159.004	SE240159.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- SUIL	- 5012	- 5012	-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 9/12/2022 (continued)

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 5012	- 50IL
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

SE240159 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 12/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	1/12/2022 SE240159.001	1/12/2022 SE240159.002	1/12/2022 SE240159.003	1/12/2022 SE240159.004	1/12/2022 SE240159.005
Arsenic, As	mg/kg	1	3	6	3	2	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.4	17	14	12	13
Copper, Cu	mg/kg	0.5	6.0	15	12	12	12
Lead, Pb	mg/kg	1	10	20	36	41	37
Nickel, Ni	mg/kg	0.5	6.0	14	9.6	8.6	9.3
Zinc, Zn	mg/kg	2	36	55	81	84	120

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
Arsenic, As	mg/kg	1	5	3	5	4	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	17	12	18	15	14
Copper, Cu	mg/kg	0.5	14	12	14	13	11
Lead, Pb	mg/kg	1	15	19	15	13	12
Nickel, Ni	mg/kg	0.5	13	8.9	14	11	10
Zinc, Zn	mg/kg	2	65	74	41	51	32

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM		- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022
PARAMETER Arsenic, As	UOM mg/kg	LOR 1	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
			5	2	3	5	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	11	11	15	12
Copper, Cu	mg/kg	0.5	14	10	11	14	12
Lead, Pb	mg/kg	1	10	25	27	15	34
Nickel, Ni	mg/kg	0.5	11	7.1	8.4	13	8.3
Zinc, Zn	mg/kg	2	43	51	51	35	81

SE240159 R0

Mercury in Soil [AN312] Tested: 12/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.001	SE240159.002	SE240159.003	SE240159.004	SE240159.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.08	0.05

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.05

SE240159 R0

Moisture Content [AN002] Tested: 9/12/2022

			BH1	BH2	BH3	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.001	SE240159.002	SE240159.003	SE240159.004	SE240159.005
% Moisture	%w/w	1	4.4	9.9	9.9	6.6	6.2

			BH6	BH7	BH8	BH9	BH10
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022	- 1/12/2022
PARAMETER	UOM	LOR	SE240159.006	SE240159.007	SE240159.008	SE240159.009	SE240159.010
% Moisture	%w/w	1	10.9	6.9	14.0	9.4	6.1

			BH11	BH12	BH13	BH14	BHDA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			1/12/2022	1/12/2022	1/12/2022	1/12/2022	1/12/2022
PARAMETER	UOM	LOR	SE240159.011	SE240159.012	SE240159.013	SE240159.014	SE240159.015
% Moisture	%w/w	1	8.2	5.4	7.7	15.6	6.5

ANALYTICAL RESULTS

SE240159 R0

Trace Metals (Total) in Water by ICPMS [AN022/AN318] Tested: 13/12/2022

			RINSATE
PARAMETER	UOM	LOR	WATER - 1/12/2022 SE240159.016
Total Arsenic	µg/L	1	<1
Total Cadmium	μg/L	0.1	<0.1
Total Chromium	µg/L	1	<1
Total Copper	µg/L	1	<1
Total Nickel	μg/L	1	<1
Total Lead	μg/L	1	<1
Total Zinc	µg/L	5	<5

Mercury (total) in Water [AN311(Perth) /AN312] Tested: 7/12/2022

			RINSATE
			WATER
			- 1/12/2022
PARAMETER	UOM	LOR	SE240159.016
Total Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN022/AN318	Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS technique, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN022	The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth) /AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions taken from unfiltered sample are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <lor <="" <lor="" all="" and="" are="" assuming="" half="" lor="" lor.<="" results="" second="" td="" the="" third="" zero,=""></lor>
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

NVL Not IS Insu LNR Sar

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.
 UOM
 Unit of Measure.

 LOR
 Limit of Reporting.

 ↑↓
 Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

-	Ref:	15067													
	Investigator:	Envirowest Con 9 Cameron Plac PO Box 8158 ORANGE NSW	ce	Sample matrix			Sample matrix Sample preservation				Analysis				
	Telephone:	(02) 6361 4954									SG	S Method Co	ode		
	Email: Contact Person: Invoice:	greg@envirowe Greg Madafiglic accounts@envi)							CL10	CL2				
	Laboratory:	SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015		Water	Soil	Sludge	Cool	HNO3/ HCI	Unpre- served	8Metals,TRH,BTEXN, PAH					
	Quotation #: Courier/CN:	Envir_70119_20 Grants Express	vir_70119_2019 ants Express							ls, TRH	METALS				
	Sample ID	Container*	Sampling Date/Time							8Meta PAH	8 MET				
1	BH1	A	01/12/2022		Х		Х			Х					
23	BH2	Α	01/12/2022		Х		Х			Х					
3	BH3	A	01/12/2022		Х		Х			Х					
4	BH4	A	01/12/2022		Х		Х			Х				1	
5	BH5	A	01/12/2022		Х		Х			Х					
6	BH6	A	01/12/2022		Х		Х			Х		SGS EF	IS Sydney	COC	
7	BH7	A	01/12/2022		Х		Х			Х		SE2	40159		
3	BH8	A	01/12/2022		Х		Х			Х					
7	BH9	A	01/12/2022		Х		Х			Х					
0	BH10	A	01/12/2022		Х		Х			Х					
1	BH11	A	01/12/2022		Х		Х			Х					
2	BH12	A	01/12/2022		Х		Х			Х					
	Investigator: I atte collection of these		r field sampling pro	ocedures we	re used d	uring the	Sampler Date: 01/	name: Greo 12/2022) ime: 1500					
	Relinquished by: (print and signatu	Virginia	Bragg	Date: 05/12	2/2022	Time 1000	Received (print and signature	1 28	R. 8.			ime 2 22 (27.30		

Please return completed form to Envirowest Consulting, *A = Solvent rinsed glass jar with Teflon lined lid and green label, B= Plastic with green label, C= Amber with green label, D= Vial with white label, E= Plastic with red label

Chain of Cu	ustody Form -	Ref 15067				S	Sheet 2 of 2						
Ref:	15067												
Investigator:	Envirowest Cor 9 Cameron Pla PO Box 8158 ORANGE NSW	ce	Sample matrix			Sample preservation			Analysis				
Telephone:	(02) 6361 4954									SGS Me	S Method Code		
Email: Contact Person: Invoice:	greg@envirowest.net.au Greg Madafiglio accounts@envirowest.net.au								CL10	0 CL2			
Laboratory:	SGS SYDNEY 16/33 Maddox ALEXANDRIA		Water	Soil	Sludge	Cool	HNO3/ HCI	Unpre- served	8Metals,TRH,BTEXN, PAH				
Quotation #: Courier/CN:	Envir_70119_2019 Grants Express	/CN: Grants Express								als, TRH	METALS		
Sample ID	Container*	Sampling Date/Time							8Meta PAH	8 ME			
BH13	A	01/12/2022		Х		Х			Х				
BH14	A	01/12/2022		Х		Х			Х				
BHDA	A	01/12/2022		Х		Х			Х				
RINSATE	A	01/12/2022	X			Х				X			
- 29													
Investigator: I atte collection of these		r field sampling pro	ocedures we	re used d	uring the	Sampler Date: 01/	name: Greg 12/2022) ime: 1500			I	
Relinquished by: (print and signatu	Virginia	Bragg	Date: 05/12	/2022	Time 1000	Received (print and signature	R	8		ate Time	22 07	7-30	

Please return completed form to Envirowest Consulting, *A = Solvent rinsed glass jar with Teflon lined lid and green label, B= Plastic with green label, C= Amber with green label, D= Vial with white label, E= Plastic with red label

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	i	LABORATORY DETAI	ILS
Contact Client Address	Greg Madafiglio ENVIROWEST CONSULTING PTY LIMITED PO BOX 8158 ORANGE NSW 2800	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 63614954	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	greg@envirowest.net.au	Email	au.environmental.sydney@sgs.com
Project	15067	SGS Reference	SE240159 R0
Order Number	15067	Date Received	06 Dec 2022
Samples	16	Date Reported	14 Dec 2022

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	15 Soil , 1 Water	Type of documentation received	COC	
Date documentation received	6/12/2022	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	16.9C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Australia

0499 Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

lercury (total) in Water							Method: ME-(AU)-[ENV]	AN311(Perth) /A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINSATE	SE240159.016	LB265933	01 Dec 2022	06 Dec 2022	29 Dec 2022	07 Dec 2022	29 Dec 2022	07 Dec 2022
ercury in Soil								ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1	SE240159.001	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
3H2	SE240159.002	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 202
iH3	SE240159.003	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2023
H4	SE240159.004	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
iH5	SE240159.005	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2023
3H6	SE240159.006	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2023
H7	SE240159.007	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
3H8	SE240159.008	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
3H9 3H10	SE240159.009 SE240159.010	LB266588 LB266588	01 Dec 2022 01 Dec 2022	06 Dec 2022 06 Dec 2022	29 Dec 2022 29 Dec 2022	12 Dec 2022 12 Dec 2022	29 Dec 2022 29 Dec 2022	14 Dec 2022 14 Dec 2022
	SE240159.010	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022 29 Dec 2022	12 Dec 2022	29 Dec 2022	
3H11 3H12	SE240159.011	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022 29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022 14 Dec 2022
H13	SE240159.012	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022 29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
H14	SE240159.014	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 2022
HDA	SE240159.014	LB266588	01 Dec 2022	06 Dec 2022	29 Dec 2022 29 Dec 2022	12 Dec 2022	29 Dec 2022	14 Dec 202
pisture Content	3E240139.013	LB200366	01 Dec 2022	00 Dec 2022	29 Dec 2022	12 Dec 2022		ME-(AU)-[ENV]/
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H1	SE240159.001	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
iH2	SE240159.002	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H3	SE240159.003	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H4	SE240159.004	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2023
15	SE240159.005	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 202
H6	SE240159.006	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2023
47	SE240159.007	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 202
H8	SE240159.008	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 202
H9	SE240159.009	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 202
H10	SE240159.010	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H11	SE240159.011	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H12	SE240159.012	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H13	SE240159.013	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H14	SE240159.014	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
HDA	SE240159.015	LB266380	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	14 Dec 2022	13 Dec 2022
H (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H1	SE240159.001	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
H2	SE240159.002	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
H3	SE240159.003	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
H4	SE240159.004	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
45	SE240159.005	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
46	SE240159.006	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2023
H7	SE240159.007	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
18	SE240159.008	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
H9	SE240159.009	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
110	SE240159.010	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
111	SE240159.011	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
112	SE240159.012	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
113	SE240159.013	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
H14	SE240159.014	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
HDA	SE240159.015	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 202
al Recoverable Elemer	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040//
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
11	SE240159.001	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
12	SE240159.002	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
13	SE240159.003	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022

HOLDING TIME SUMMARY

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Total Recoverable Elemen	otal Recoverable Elements In Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4	SE240159.004	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH5	SE240159.005	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH6	SE240159.006	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH7	SE240159.007	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH8	SE240159.008	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH9	SE240159.009	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH10	SE240159.010	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH11	SE240159.011	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH12	SE240159.012	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH13	SE240159.013	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BH14	SE240159.014	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
BHDA	SE240159.015	LB266583	01 Dec 2022	06 Dec 2022	30 May 2023	12 Dec 2022	30 May 2023	14 Dec 2022
Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/)-[ENV]AN022/AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINSATE	SE240159.016	LB266599	01 Dec 2022	06 Dec 2022	30 May 2023	13 Dec 2022	30 May 2023	13 Dec 2022

TRH (Total Recoverable Hydrocarbons) in Soil

	nyarooarbono, m con							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1	SE240159.001	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH2	SE240159.002	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH3	SE240159.003	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH4	SE240159.004	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH5	SE240159.005	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH6	SE240159.006	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH7	SE240159.007	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH8	SE240159.008	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH9	SE240159.009	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH10	SE240159.010	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH11	SE240159.011	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH12	SE240159.012	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH13	SE240159.013	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BH14	SE240159.014	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022
BHDA	SE240159.015	LB266381	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	18 Jan 2023	13 Dec 2022

VOC's in Soil	OC's in Soil Method: ME-(AU)-[ENV]AN433								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1	SE240159.001	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH2	SE240159.002	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH3	SE240159.003	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH4	SE240159.004	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH5	SE240159.005	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH6	SE240159.006	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH7	SE240159.007	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH8	SE240159.008	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH9	SE240159.009	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH10	SE240159.010	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH11	SE240159.011	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH12	SE240159.012	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH13	SE240159.013	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BH14	SE240159.014	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
BHDA	SE240159.015	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	
Volatile Petroleum Hydrocarbons in Soll Method: ME-(AU)-[ENV]AN								ME-(AU)-[ENV]AN	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1	SE240159.001	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022	

BH2 SE240159.002 LB266384 01 Dec 2022 06 Dec 2022 15 Dec 2022 09 Dec 2022 15 Dec 2022 13 Dec 2022 BH3 SE240159.003 LB266384 01 Dec 2022 06 Dec 2022 15 Dec 2022 09 Dec 2022 15 Dec 2022 13 Dec 2022 BH4 SE240159.004 LB266384 01 Dec 2022 06 Dec 2022 15 Dec 2022 09 Dec 2022 15 Dec 2022 13 Dec 2022 BH5 LB266384 06 Dec 2022 15 Dec 2022 SE240159.005 01 Dec 2022 15 Dec 2022 09 Dec 2022 13 Dec 2022 LB266384 BH6 SE240159.006 01 Dec 2022 06 Dec 2022 15 Dec 2022 09 Dec 2022 15 Dec 2022 13 Dec 2022

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydrod	Method:	Method: ME-(AU)-[ENV]AN433						
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH7	SE240159.007	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH8	SE240159.008	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH9	SE240159.009	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH10	SE240159.010	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH11	SE240159.011	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH12	SE240159.012	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH13	SE240159.013	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BH14	SE240159.014	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022
BHDA	SE240159.015	LB266384	01 Dec 2022	06 Dec 2022	15 Dec 2022	09 Dec 2022	15 Dec 2022	13 Dec 2022

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
2-fluorobiphenyl (Surrogate)	BH1	SE240159.001	%	70 - 130%	89
	BH2	SE240159.002	%	70 - 130%	91
	BH3	SE240159.003	%	70 - 130%	102
	BH4	SE240159.004	%	70 - 130%	91
	BH5	SE240159.005	%	70 - 130%	101
	BH6	SE240159.006	%	70 - 130%	92
	BH7	SE240159.007	%	70 - 130%	91
	BH8	SE240159.008	%	70 - 130%	93
	BH9	SE240159.009	%	70 - 130%	96
	BH10	SE240159.010	%	70 - 130%	99
	BH11	SE240159.011	%	70 - 130%	99
	BH12	SE240159.012	%	70 - 130%	96
	BH13	SE240159.013	%	70 - 130%	93
	BH14	SE240159.014	%	70 - 130%	84
	BHDA	SE240159.015	%	70 - 130%	91
d14-p-terphenyl (Surrogate)	BH1	SE240159.001	%	70 - 130%	90
	BH2	SE240159.002	%	70 - 130%	93
	BH3	SE240159.003	%	70 - 130%	93
	BH4	SE240159.004	%	70 - 130%	86
	BH5	SE240159.005	%	70 - 130%	93
	BH6	SE240159.006	%	70 - 130%	95
	BH7	SE240159.000	%	70 - 130%	93
	BH8	SE240159.008	%	70 - 130%	92
	вн9	SE240159.008	%	70 - 130%	97
	BH10	SE240159.009	%	70 - 130%	93
	BH10 BH11	SE240159.010	%		100
				70 - 130%	
	BH12	SE240159.012	%	70 - 130%	104
	BH13	SE240159.013	%	70 - 130%	84
	BH14	SE240159.014	%	70 - 130%	102
	BHDA	SE240159.015	%	70 - 130%	93
d5-nitrobenzene (Surrogate)	BH1	SE240159.001	%	70 - 130%	102
	BH2	SE240159.002	%	70 - 130%	87
	BH3	SE240159.003	%	70 - 130%	90
	BH4	SE240159.004	%	70 - 130%	100
	BH5	SE240159.005	%	70 - 130%	96
	BH6	SE240159.006	%	70 - 130%	105
	BH7	SE240159.007	%	70 - 130%	105
	BH8	SE240159.008	%	70 - 130%	105
	BH9	SE240159.009	%	70 - 130%	105
	BH10	SE240159.010	%	70 - 130%	95
	BH11	SE240159.011	%	70 - 130%	93
	BH12	SE240159.012	%	70 - 130%	101
	BH13	SE240159.013	%	70 - 130%	104
	BH14	SE240159.014	%	70 - 130%	99
	BHDA	SE240159.015	%	70 - 130%	102

Sample Name	One was to Marine to a			·
o ann pro ritanno	Sample Number	Units	Criteria	Recovery %
BH1	SE240159.001	%	60 - 130%	84
BH2	SE240159.002	%	60 - 130%	84
BH3	SE240159.003	%	60 - 130%	83
BH4	SE240159.004	%	60 - 130%	85
BH5	SE240159.005	%	60 - 130%	88
BH6	SE240159.006	%	60 - 130%	84
BH7	SE240159.007	%	60 - 130%	87
BH8	SE240159.008	%	60 - 130%	83
BH9	SE240159.009	%	60 - 130%	87
BH10	SE240159.010	%	60 - 130%	87
BH11	SE240159.011	%	60 - 130%	83
BH12	SE240159.012	%	60 - 130%	88
BH13	SE240159.013	%	60 - 130%	83
	BH1 BH2 BH3 BH4 BH5 BH6 BH7 BH8 BH9 BH10 BH11 BH12	BH1 SE240159.001 BH2 SE240159.002 BH3 SE240159.003 BH4 SE240159.004 BH5 SE240159.005 BH6 SE240159.006 BH7 SE240159.007 BH8 SE240159.008 BH9 SE240159.009 BH10 SE240159.010 BH11 SE240159.011 BH12 SE240159.012	BH1 SE240159.001 % BH2 SE240159.002 % BH3 SE240159.003 % BH4 SE240159.004 % BH5 SE240159.005 % BH6 SE240159.006 % BH7 SE240159.007 % BH8 SE240159.008 % BH9 SE240159.009 % BH10 SE240159.010 % BH11 SE240159.011 % BH12 SE240159.012 %	BH1 SE240159.001 % 60 - 130% BH2 SE240159.002 % 60 - 130% BH3 SE240159.003 % 60 - 130% BH4 SE240159.004 % 60 - 130% BH4 SE240159.005 % 60 - 130% BH5 SE240159.005 % 60 - 130% BH6 SE240159.006 % 60 - 130% BH7 SE240159.007 % 60 - 130% BH8 SE240159.008 % 60 - 130% BH9 SE240159.009 % 60 - 130% BH10 SE240159.010 % 60 - 130% BH11 SE240159.011 % 60 - 130% BH12 SE240159.012 % 60 - 130%

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

				_	IE-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH14	SE240159.014	%	60 - 130%	80
	BHDA	SE240159.015	%	60 - 130%	85
4-1,2-dichloroethane (Surrogate)	BH1	SE240159.001	%	60 - 130%	86
	BH2	SE240159.002	%	60 - 130%	79
	BH3	SE240159.003	%	60 - 130%	82
	BH4	SE240159.004	%	60 - 130%	83
	BH5	SE240159.005	%	60 - 130%	82
	BH6	SE240159.006	%	60 - 130%	78
	BH7	SE240159.007	%	60 - 130%	82
	BH8	SE240159.008	%	60 - 130%	76
	BH9	SE240159.009	%	60 - 130%	81
	BH10	SE240159.010	%	60 - 130%	82
	BH11	SE240159.011	%	60 - 130%	82
	BH12	SE240159.012	%	60 - 130%	84
	BH13	SE240159.013	%	60 - 130%	83
	BH14	SE240159.014	%	60 - 130%	80
	BHDA	SE240159.015	%	60 - 130%	84
3-toluene (Surrogate)	BH1	SE240159.001	%	60 - 130%	85
	BH2	SE240159.002	%	60 - 130%	82
	BH3	SE240159.003	%	60 - 130%	84
	BH4	SE240159.004	%	60 - 130%	86
	BH5	SE240159.005	%	60 - 130%	85
	BH6	SE240159.006	%	60 - 130%	81
	BH7	SE240159.007	%	60 - 130%	87
	BH8	SE240159.008	%	60 - 130%	81
	BH9	SE240159.009	%	60 - 130%	84
	BH10	SE240159.010	%	60 - 130%	85
	BH11	SE240159.011	%	60 - 130%	83
	BH12	SE240159.012	%	60 - 130%	86
	BH13	SE240159.013	%	60 - 130%	83
	BH14	SE240159.014	%	60 - 130%	79
	BHDA	SE240159.015	%	60 - 130%	85
tile Petroleum Hydrocarbons in Soil					IE-(AU)-[ENV
· ·	O-mula Nome	Occurrite Neurole en	1114		
rameter	Sample Name	Sample Number	Units	Criteria	Recove
omofluorobenzene (Surrogate)	BH1	SE240159.001	%	60 - 130%	84
	BH2	SE240159.002	%	60 - 130%	84
	BH3	SE240159.003	%	60 - 130%	83
	BH4	SE240159.004	%	60 - 130%	85
	BH5	SE240159.005	%	60 - 130%	88
	BH6	SE240159.006	%	60 - 130%	84
	BH7	SE240159.007	%	60 - 130%	87
	BH8	SE240159.008	%	60 - 130%	83
	BH9	SE240159.009	%	60 - 130%	87
	BH10	SE240159.010	%	60 - 130%	87
	BH11	SE240159.011	%	60 - 130%	83
	BH12	SE240159.012	%	60 - 130%	88
	BH13	SE240159.013	%	60 - 130%	83
	BH14	SE240159.014	%	60 - 130%	80
	BHDA	SE240159.015	%	60 - 130%	85
-1,2-dichloroethane (Surrogate)	BH1	SE240159.001	%	60 - 130%	86
	BH2	SE240159.002	%	60 - 130%	79
	BH3	SE240159.003	%	60 - 130%	82
	BH4	SE240159.004	%	60 - 130%	83
	BH5	SE240159.005	%	60 - 130%	82
	5110				
	BH6	SE240159.006	%	60 - 130%	78

BH7

BH8

BH9

BH10

BH11

SE240159.007

SE240159.008

SE240159.009

SE240159.010

SE240159.011

%

%

%

%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

82

76

81

82

82

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Parameter Sample Nan Sample Number Units Criteria Recovery % d4-1.2-dichloroethane (Surrogate) BH12 SE240159.012 % 60 - 130% 84 BH13 SE240159.013 % 60 - 130% 83 BH14 SE240159.014 % 60 - 130% 80 BHDA SE240159.015 % 60 - 130% 84 d8-toluene (Surrogate) BH1 SE240159.001 % 60 - 130% 85 BH2 SE240159.002 60 - 130% 82 % BH3 SE240159.003 % 60 - 130% 84 BH4 SE240159.004 % 60 - 130% 86 BH5 SE240159.005 60 - 130% 85 % BH6 SE240159.006 % 60 - 130% 81 BH7 SE240159.007 % 60 - 130% 87 BH8 SE240159.008 % 60 - 130% 81 BH9 SE240159.009 % 60 - 130% 84 BH10 SE240159.010 % 60 - 130% 85 BH11 SE240159.011 60 - 130% 83 % BH12 SE240159.012 % 60 - 130% 86 BH13 SE240159.013 % 60 - 130% 83 BH14 SE240159.014 % 60 - 130% 79 SE240159.015 BHDA % 60 - 130% 85

METHOD BLANKS

SE240159 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Ν	Nethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB266588.001	Mercury	mg/kg	0.05	<0.05

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result
_B266381.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	117
		2-fluorobiphenyl (Surrogate)	%	-	97
		d14-p-terphenyl (Surrogate)	%	-	101
otal Recoverable Eler	ments in Soil/Waste Solids	Materials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
ample Number		Parameter	Units	LOR	Result

eanipre trainiser		••••••		
LB266583.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/AN318 Sample Number Parameter Units LOR Result LB266599.001 Total Arsenic µg/L 1 <1 Total Cadmium 0.1 <0.1 µg/L Total Chromium <1 µg/L 1 Total Copper µg/L 1 <1 Total Lead µg/L 1 <1 Total Nickel <1 μg/L 1 Total Zinc µg/L 5 <5

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable Hydrocarbons		Meth	od: ME-(AU)-[ENV]AN403	
Sample Number	Parameter	Units	LOR	Result
LB266381.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

Method: ME-(AU)-[ENV]AN433

VOC's in Soil				Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB266384.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1

METHOD BLANKS

SE240159 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB266384.001	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	82
	Totals	Total BTEX*	mg/kg	0.6	<0.6
Volatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB266384.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	72

Method: ME-(AU)-IENVIAN312

Method: ME_(ALI)_IENI/(AN//20

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (total) in W	/ater			Meth	od: ME-(AU)-[8	ENVJAN311(P	erth) /AN312
Original	Duplicate	Parameter	Units LO	R Original	Duplicate	Criteria %	RPD %
SE240159.016	LB265933.007	Total Mercury	μg/L 0.00	01 <0.0001	0.0000	200	86

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240159.010	LB266588.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE240160.041	LB266588.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Moisture Content	Moisture Content Method: ME-(AU)-[ENV]AN0							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240159.007	LB266380.011	% Moisture	%w/w	1	6.9	6.8	45	2
SE240159.015	LB266380.020	% Moisture	%w/w	1	6.5	6.9	45	7

PAH (Polynuclear Aromatic Hydrocarbone) in Soil

0	Dun linete		Development	1124	100	Only in the	Dun linet-	0	DDD
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE240159.007	LB266381.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4	30	18
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	3
E240159.015	LB266381.023		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

	Alomatic Hydrocarb	,			1.00-	Original			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE240159.015	LB266381.023		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.6	30	10
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
otal Recoverable	Elements in Soil/Wa	aste Solids/Materials	by ICPOES				Method: ME-	(AU)-[ENV]A	N040/AN32
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240159.010	LB266583.014		Arsenic, As	mg/kg	1	3	5	55	45
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	14	14	34	2
			Copper, Cu	mg/kg	0.5	11	11	35	4
			Nickel, Ni	mg/kg	0.5	10	13	34	24
			Lead, Pb	mg/kg	1	12	11	39	9
			Zinc, Zn	mg/kg	2	32	30	36	5
SE240160.041	LB266583.024		Arsenic, As		1	2	3	67	19
5E240160.041	LD200303.024			mg/kg					
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	11	14	34	
			Copper, Cu	mg/kg	0.5	11	11	35	6
			Nickel, Ni	mg/kg	0.5	7.7	9.2	36	18
			Lead, Pb	mg/kg	1	24	33	33	31
			Zinc, Zn	mg/kg	2	180	170	31	4
race Metals (Tota	al) in Water by ICPM	S					Method: ME-	(AU)-[ENV]A	N022/AN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240406.003	LB266599.021		Total Arsenic	µg/L	1	0.05	0.047	200	0
			Total Cadmium	µg/L	0.1	0.002	0.014	200	0
			Total Chromium	µg/L	1	0.451	0.498	200	0
			Total Copper	µg/L	1	2.359	2.346	58	1
			Total Lead	µg/L	1	0.216	0.259	200	0
			Total Zinc	µg/L	5	3.973	4.161	138	0
RH (Total Recov	erable Hydrocarbons	a) in Soil					Meth	od: ME-(AU)	
	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Demonster	Units	LOR	Quining			
Original SE240159.007	Duplicate LB266381.014		Parameter TRH C10-C14		20	Original <20	Duplicate <20	200	RPD %
5E240159.007	LD200301.014			mg/kg	45		<20		0
			TRH C15-C28	mg/kg		<45		141	
			TRH C29-C36	mg/kg	45	70	77	91	9
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	180	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	95	97	124	2
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E240159.015	LB266381.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	151	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil							Meth	od: ME-(AU)	-[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE240159.007	LB266384.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0 KPD 70
/	2020004.014	Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		, a ornatio	Ethylbenzene			<0.1	<0.1	200	0
			· · ·	mg/kg	0.1				
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240159.007	LB266384.014	Monocyclic	o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.2	7.8	50	5
			d8-toluene (Surrogate)	mg/kg	-	8.7	8.0	50	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.1	50	7
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE240159.015	LB266384.023	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	50 5 50 8 50 7 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.3	50	2
			_d8-toluene (Surrogate)	mg/kg	-	8.5	8.5	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	8.3	50	3
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum	Hydrocarbons in So	il					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE240159.007	LB266384.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.2	7.8	30	5
			d8-toluene (Surrogate)	mg/kg	-	8.7	8.0	30	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.1	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE240159.015	LB266384.023		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.3	30	2
			d8-toluene (Surrogate)	mg/kg	-	8.5	8.5	30	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	8.3	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

						/
Mercury in Soil				N	lethod: ME-(A	U)-[ENV]AN312
Sample Number Param	ter Units	LOR	Result	Expected	Criteria %	Recovery %
LB266588.002 Mercury	mg/kg	0.05	0.19	0.2	70 - 130	95

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear A	Noniauc Hyurocai	bons) in Soil							U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266381.002		Naphthalene		mg/kg	0.1	4.4	4	60 - 140	111
		Acenaphthylene		mg/kg	0.1	4.5	4	60 - 140	112
		Acenaphthene		mg/kg	0.1	4.3	4	60 - 140	108
		Phenanthrene		mg/kg	0.1	4.3	4	60 - 140	108
		Anthracene		mg/kg	0.1	4.1	4	60 - 140	102
		Fluoranthene	1	mg/kg	0.1	4.5	4	60 - 140	111
		Pyrene		mg/kg	0.1	4.8	4	60 - 140	120
		Benzo(a)pyrene		mg/kg	0.1	4.1	4	60 - 140	102
	Surrogates	d5-nitrobenzene (Surrogate)		mg/kg	-	0.4	0.5	40 - 130	90
		2-fluorobiphenyl (Surrogate)		mg/kg	-	0.5	0.5	40 - 130	95
		d14-p-terphenyl (Surrogate)		mg/kg	-	0.5	0.5	40 - 130	93
Total Recoverable	Elements in Soil/V	aste Solids/Materials by ICPOES					Method	: ME-(AU)-[EN\	/JAN040/AN32
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266583.002		Arsenic, As		mg/kg	1	340	318.22	80 - 120	108
		Cadmium, Cd		mg/kg	0.3	3.8	4.81	70 - 130	78
		Chromium, Cr		mg/kg	0.5	39	38.31	80 - 120	102
		Copper, Cu		mg/kg	0.5	310	290	80 - 120	108
		Nickel, Ni		mg/kg	0.5	190	187	80 - 120	101
		Lead, Pb		mg/kg	1	95	89.9	80 - 120	106
		Zinc, Zn		mg/kg	2	280	273	80 - 120	103
Trace Metals (Tota	I) in Water by ICPI	MS					Method	: ME-(AU)-[EN\	/JAN022/AN31
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266599.002		Total Arsenic		µg/L	1	21	20	80 - 120	106
		Total Cadmium		µg/L	0.1	20	20	80 - 120	102
		Total Chromium		µg/L	1	21	20	80 - 120	103
		Total Copper		µg/L	1	21	20	80 - 120	104
		Total Lead		µg/L	1	20	20	80 - 120	98
		Total Nickel		µg/L	1	20	20	80 - 120	98
		Total Zinc		µg/L	5	21	20	80 - 120	104
TRH (Total Recove	rable Hydrocarbo	ns) in Soil						Method: ME-(A	U)-[ENV]AN40
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266381.002		TRH C10-C14		mg/kg	20	48	40	60 - 140	120
		TRH C15-C28		mg/kg	45	46	40	60 - 140	115
		TRH C29-C36		mg/kg	45	<45	40	60 - 140	95
	TRH F Bands	TRH >C10-C16		mg/kg	25	48	40	60 - 140	120
		TRH >C16-C34 (F3)		mg/kg	90	<90	40	60 - 140	105
		TRH >C34-C40 (F4)		mg/kg	120	<120	20	60 - 140	110
VOC's in Soil								Method: ME-(Al	U)-[ENV]AN43
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266384.002	Monocyclic	Benzene		mg/kg	0.1	3.4	5	60 - 140	69
	Aromatic	Toluene		mg/kg	0.1	3.9	5	60 - 140	77
		Ethylbenzene		mg/kg	0.1	3.7	5	60 - 140	75
		m/p-xylene		mg/kg	0.2	7.1	10	60 - 140	71
		o-xylene		mg/kg	0.1	3.7	5	60 - 140	73
	Surrogates	d4-1,2-dichloroethane (Surrogate)		mg/kg	-	7.9	10	70 - 130	79
	-	d8-toluene (Surrogate)		mg/kg	-	10.8	10	70 - 130	108
		Bromofluorobenzene (Surrogate)		mg/kg	-	9.0	10	70 - 130	90
Volatile Petroleum	Hydrocarbons in S							Method: ME-(Al	
Sample Number	yarooaroono in c			Unito	LOR	Bogult		Criteria %	
LB266384.002		Parameter TRH C6-C10		Units	LOR 25	Result 66	Expected 92.5	60 - 140	Recovery % 72
LD200304.UU2				mg/kg	25				
		TRH C6-C9		mg/kg	20	59	80	60 - 140	74

mg/kg

mg/kg

7.9

9.0

Surrogates

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

79

70 - 130

70 - 130

10

10

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum I	Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN4								
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB266384.002	VPH F Bands	TRH C6-C10 minus BTEX (F1)		mg/kg	25	44	62.5	60 - 140	71

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Mett	nod: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE240159.001	LB266588.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	102

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample									
	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE240158.005	LB266381.004		Naphthalene	mg/kg	0.1	4.2	<0.1	4	105
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.2	<0.1	4	104
			Acenaphthene	mg/kg	0.1	4.3	<0.1	4	108
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.1	<0.1	4	102
			Anthracene	mg/kg	0.1	3.9	<0.1	4	97
			Fluoranthene	mg/kg	0.1	4.6	<0.1	4	114
			Pyrene	mg/kg	0.1	4.3	<0.1	4	106
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.3	<0.1	4	83
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.3</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	3.3	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.4</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.4	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.5</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	3.5	<0.3	-	-
			Total PAH (18)	mg/kg	0.8	33	<0.8	-	-
	:	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	-	88
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	-	93
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	83
otal Recoverabl	le Elements in Soil/Waste	Solids/Mate	rials by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E240159.001	LB266583.004		Arsenic, As	mg/kg	1	53	3	50	99
			Cadmium, Cd	mg/kg	0.3	43	<0.3	50	87
			Chromium, Cr	mg/kg	0.5	56	8.4	50	96
									90
			Copper, Cu						90
			Copper, Cu Nickel, Ni	mg/kg	0.5	55	6.0 6.0	50	98
			Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg			6.0		
			Nickel, Ni	mg/kg mg/kg mg/kg	0.5 0.5	55 52	6.0 6.0	50 50	98 93
ace Metals (To	tal) in Water by ICPMS		Nickel, Ni Lead, Pb	mg/kg mg/kg	0.5 0.5 1	55 52 56	6.0 6.0 10 36	50 50 50 50	98 93 92 93
	tal) in Water by ICPMS		Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2	55 52 56 82	6.0 6.0 10 36 Method: ME	50 50 50 50 :-(AU)-[ENV]	98 93 92 93 AN022/AN
C Sample	Sample Number		Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg Units	0.5 0.5 1 2 LOR	55 52 56 82 Result	6.0 6.0 10 36 Method: ME Original	50 50 50 50 E-(AU)-[ENV] Spike	98 93 92 93 AN022/AN Recove
C Sample	· · ·	_	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic	mg/kg mg/kg mg/kg Units μg/L	0.5 0.5 1 2 LOR 1	55 52 56 82 Result 22	6.0 6.0 10 36 Method: ME Original <1	50 50 50 50 :-(AU)-[ENV] Spike 20	98 93 92 93 AN022/AN Recove 109
C Sample	Sample Number	_	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1	55 52 56 82 Result 22 21	6.0 6.0 10 36 Method: ME Original <1 <0.1	50 50 50 50 50 50 50 50 50 50 50 50 50 5	98 93 92 93 AN022/AN Recove 109 107
C Sample	Sample Number	_	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1	55 52 56 82 Result 22 21 22	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1	50 50 50 50 50 50 50 50 50 50 50 50 50 5	98 93 92 93 AN022/AN Recove 109 107 -
C Sample	Sample Number	_	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1	55 52 56 82 Result 22 21 22 22	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1 <1	50 50 50 50 - - 20 20 - 20	98 93 92 93 AN022/AN Recove 109 107 - 108
C Sample	Sample Number	_	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1	55 52 56 82 Result 22 21 22 22 22 21	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1 <1 <1 <1 <1	50 50 50 50 50 50 50 50 50 50 50 50 20 20 20 20 20	98 93 92 93 AN022/AP Recove 109 107 - 108 104
C Sample	Sample Number	-	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	55 52 56 82 Result 22 21 22 22 21 21 21	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	50 50 50 50 5-(AU)-[ENV] 20 20 - 20 20 20	98 93 92 93 AN022/AI Recove 109 107 - 108 104 104
QC Sample E240159.016	Sample Number LB266599.004		Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1	55 52 56 82 Result 22 21 22 22 22 21	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5	50 50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101
IC Sample E240159.016	Sample Number LB266599.004 verable Hydrocarbons) ir	n Soil	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	55 52 56 82 Result 22 21 22 22 21 21 21	6.0 6.0 10 36 Method: ME Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth	50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 101
C Sample E240159.016	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soll	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	55 52 56 82 Result 22 21 22 22 21 21 21	6.0 6.0 10 36 Method: ME Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5	50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AM Recove 109 107 - 108 104 104 103 101
C Sample E240159.016 RH (Total Reco IC Sample	Sample Number LB266599.004 verable Hydrocarbons) ir	n Soil	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 5	55 52 56 82 Result 22 21 22 22 21 21 21 21 22	6.0 6.0 10 36 Method: ME Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth	50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 101
C Sample E240159.016 RH (Total Reco C Sample	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soil	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 5 LOR	55 52 56 82 Result 22 21 22 21 21 21 22 21 21 22 Result	6.0 6.0 10 36 Method: ME Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth Original	50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 101 CENVIAN Recove
QC Sample iE240159.016	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soll	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L <td>0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20</td> <td>55 52 56 82 Result 22 21 22 21 21 21 22 21 21 22 8 8 8 8 8</td> <td>6.0 6.0 10 36 Method: ME Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth Original <20</td> <td>50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20</td> <td>98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 101)-JENVJAN Recove 137</td>	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20	55 52 56 82 Result 22 21 22 21 21 21 22 21 21 22 8 8 8 8 8	6.0 6.0 10 36 Method: ME Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth Original <20	50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 101)-JENVJAN Recove 137
CC Sample E240159.016 RH (Total Reco CC Sample	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soil	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg units µg/L µg/L <td>0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45</td> <td>55 52 56 82 Result 22 21 22 21 21 22 21 21 22 21 21 22 59 57</td> <td>6.0 6.0 10 36 Method: ME 0riginal <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Criginal <20 Criginal <20 <45</td> <td>50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20</td> <td>98 93 92 93 AN022/Ar Recove 109 107 - 108 104 103 101 101 (CENV]Ar Recove 137 125</td>	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45	55 52 56 82 Result 22 21 22 21 21 22 21 21 22 21 21 22 59 57	6.0 6.0 10 36 Method: ME 0riginal <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Criginal <20 Criginal <20 <45	50 50 50 50 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/Ar Recove 109 107 - 108 104 103 101 101 (CENV]Ar Recove 137 125
C Sample E240159.016 RH (Total Reco C Sample	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soll	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg g/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45 45	55 52 56 82 Result 22 21 22 21 21 21 22 21 21 22 59 57 52	6.0 6.0 10 36 Method: ME 0riginal <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth 0riginal <20 <45 <45	50 50 50 50 50 50 50 50 50 	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 0)-[ENV]AN Recove 137 125
CC Sample E240159.016 RH (Total Reco CC Sample	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number	n Soll	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg g/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45 45 100	55 52 56 82 Result 22 21 22 21 21 21 22 21 21 22 59 57 52 52 <100	6.0 6.0 10 36 Method: ME 0riginal <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth 0riginal <20 <45 <45 <100	50 50 50 Solution Spike 20 20 20 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 - ENVIAN Recove 137 125 101 -
C Sample E240159.016 RH (Total Reco C Sample	Sample Number LB266599.004 verable Hydrocarbons) ir Sample Number LB266381.004	1 Soil TRH F	Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg g/L μg/L	0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 LOR 20 45 45 100 110	55 52 56 82 22 21 22 21 21 22 21 21 21 22 21 59 57 52 57 52 <100 170	6.0 6.0 10 36 Method: ME 0riginal <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Meth 0riginal <20 <45 <45 <100 <110	50 50 50 Solution Spike 20 20 20 20 20 20 20 20 20 20 20 20 20	98 93 92 93 AN022/AN Recove 109 107 - 108 104 103 101 - ENVIAN Recove 137 125 101 -

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

RH (Total Reco	verable Hydrocarbo	ns) in Soil (contini	Jed)		_		Meth	100: ME-(AU	J)-[ENV]AN403
QC Sample	Sample Number	•	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE240158.005	LB266381.004	TRH F	TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	95
		Bands	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
/OC's in Soil							Meth	od: ME-(AU	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE240158.005	LB266384.004	Monocyclic	Benzene	mg/kg	0.1	3.3	<0.1	5	66
		Aromatic	Toluene	mg/kg	0.1	4.0	<0.1	5	80
			Ethylbenzene	mg/kg	0.1	4.0	<0.1	5	80
			m/p-xylene	mg/kg	0.2	7.6	<0.2	10	75
			o-xylene	mg/kg	0.1	4.0	<0.1	5	80
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.0	7.1	10	70
			d8-toluene (Surrogate)	mg/kg	-	8.9	9.3	10	89
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	8.3	10	80
		Totals	Total BTEX*	mg/kg	0.6	23	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	12	<0.3	-	-
/olatile Petroleu	m Hydrocarbons in S	Soll					Meth	iod: ME-(AU	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE240158.005	LB266384.004		TRH C6-C10	mg/kg	25	68	<25	92.5	73
			TRH C6-C9	mg/kg	20	63	<20	80	78
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.0	7.1	10	70
			d8-toluene (Surrogate)	mg/kg	-	8.9	9.3	10	89
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	8.3	-	80
		VPH F	Benzene (F0)	mg/kg	0.1	3.3	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	45	<25	62.5	71

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CERTIFICATE OF ANALYSIS

Work Order	ES2243874	Page	: 1 of 6
Client		Laboratory	: Environmental Division Sydney
Contact	: MR GREG MADAFIGLIO	Contact	: Customer Services ES
Address	9 CAMERON PLACE PO BOX 8158 ORANGE NSW, AUSTRALIA 2800	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 63614954	Telephone	: +61-2-8784 8555
Project	: 15067	Date Samples Received	: 06-Dec-2022 08:00
Order number	: 15067	Date Analysis Commenced	: 06-Dec-2022
C-O-C number	: 15067	Issue Date	: 13-Dec-2022 15:36
Sampler	:		Iac-MRA NATA
Site	: 15067		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Inorganics, Smithfield, NSW
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Analytical Results

Arsenic 744 Cadmium 744 Chromium 744 Copper 744 Lead 743 Nickel 744	Imber L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.OR 0.1 0.1 1 0.1 1 0.1 0.2 0.2 0.2 0.2 0.2	g date / time Unit DH Unit DH Unit DH Unit DH Unit MS/cm Mag/cm M	01-Dec-2022 00:00 ES2243874-001 Result	14-Jan-2022 00:00 ES2243874-002 Result 3.1 	02-Dec-2022 00:00 ES2243874-003 Result 7.5 8.6 129 5.0 8.8 8.8 2.4	
EA001: pH in soil using 0.01M CaCl extract pH (CaCl2) EA002: pH 1:5 (Soils) pH Value EA010: Conductivity (1:5) Electrical Conductivity @ 25°C EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Moisture Content Build Calcium Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Copper 744 Lead 743 Nickel 744		0.1 0.1 1 0.1 0.1 0.2 0.2 0.2	pH Unit (pH Unit (pH Unit (μS/cm (μS/cm (μ μ μ μ μ μ μ μ μ μ μ μ μ	Result	Result	Result 7.5 8.6 129 5.0 8.8	
EA001: pH in soil using 0.01M CaCl extract pH (CaCl2) EA002: pH 1:5 (Soils) pH Value EA010: Conductivity (1:5) Electrical Conductivity @ 25°C EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Moisture Content Belectrical Conductivity @ 25°C EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Belectrical Conductivity @ 25°C EA056: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Copper 744 Lead 743 Nickel 744		0.1 1 0.1 1.0 0.2 0.2 0.2 0.2	pH Unit pH Uni	 4.8	 3.1	7.5 8.6 129 5.0 8.8	
pH (CaCl2)EA002: pH 1:5 (Soils) pH ValueEA010: Conductivity (1:5) Electrical Conductivity @ 25°CEA055: Moisture Content (Dried @ 105-110°C) Moisture ContentMoisture ContentBO06: Exchangeable Cations on Alkaline Soils Exchangeable CalciumExchangeable CalciumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AES IronIron743 ArsenicCadmium744 CopperCopper743 Nickel744Cad744Copper744Cadel Calciem744Copper744Cadel Calciem744Copper744Cadel Calciem744Copper744Cadel Calciem744Copper744Cadel Calciem744Cadel Calciem744Cadel Calciem744Copper744Cadel Calciem744Cadel Calc		0.1 1 0.1 1.0 0.2 0.2 0.2 0.2	pH Unit pH Uni	 4.8	 3.1	8.6 129 5.0 8.8	
pH (CaCl2)EA002: pH 1:5 (Soils) pH ValueEA010: Conductivity (1:5) Electrical Conductivity @ 25°CEA055: Moisture Content (Dried @ 105-110°C) Moisture ContentMoisture ContentMoisture ContentED006: Exchangeable Cations on Alkaline Soils Exchangeable CalciumExchangeable CalciumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AES IronIron743 CarsenicArsenic744 CopperCopper743 Nickel744744Copper744Copper744Cadmium744Copper744Copper744Cada744Cada744Copper744Cada744Cada744Cada744Cada744Cada744Cada744Cada744CadaCada744CadaCada744CadaCada744CadaCada744CadaCada744CadaCada744CadaCada744CadaCadaCadaCada		0.1 1 0.1 1.0 0.2 0.2 0.2 0.2	pH Unit pH Uni	 4.8	 3.1	8.6 129 5.0 8.8	
pH ValueEA010: Conductivity (1:5)Electrical Conductivity @ 25°CEA055: Moisture Content (Dried @ 105-110°C)Moisture ContentMoisture ContentBerne ContentEb006: Exchangeable Cations on Alkaline SoilsExchangeable CalciumExchangeable MagnesiumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron744Cadmium744Copper744Lead744744Copper		1 0.1 1.0 0.2 0.2 0.2 0.2 0.2	μS/cm % % meq/100g meq/100g meq/100g meq/100g	 4.8 	 3.1	129 5.0 8.8	
pH ValueEA010: Conductivity (1:5)Electrical Conductivity @ 25°CEA055: Moisture Content (Dried @ 105-110°C)Moisture ContentMoisture ContentBerne ContentEb006: Exchangeable Cations on Alkaline SoilsExchangeable CalciumExchangeable MagnesiumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron744Cadmium744Copper744Lead744744Copper		1 0.1 1.0 0.2 0.2 0.2 0.2 0.2	μS/cm % % meq/100g meq/100g meq/100g meq/100g	 4.8 	 3.1	129 5.0 8.8	
EA010: Conductivity (1:5) Electrical Conductivity @ 25°C EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Moisture Content ED006: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Calcium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Copper 744 Lead 743 Nickel 744		1 0.1 1.0 0.2 0.2 0.2 0.2 0.2	μS/cm % % meq/100g meq/100g meq/100g meq/100g	 4.8 	 3.1 	129 5.0 8.8	
Electrical Conductivity @ 25°C EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Moisture Content ED006: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Chromium 744 Copper 744 Lead 743 Nickel 744	(0.1 1.0 0.2 0.2 0.2 0.2	% % % meq/100g meq/100g meq/100g meq/100g	 4.8 	 3.1 	5.0 8.8	
EA055: Moisture Content (Dried @ 105-110°C) Moisture Content Moisture Content ED006: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Chromium 744 Lead 743 Nickel 744	(0.1 1.0 0.2 0.2 0.2 0.2	% % % meq/100g meq/100g meq/100g meq/100g	 4.8 	3.1 	5.0 8.8	
Moisture ContentMoisture ContentED006: Exchangeable Cations on Alkaline SoilsExchangeable CalciumExchangeable MagnesiumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron743Arsenic744Cadmium744Copper744Lead744Nickel744	() () () ()	1.0 0.2 0.2 0.2 0.2 0.2	% meq/100g meq/100g meq/100g meq/100g	4.8 	3.1 	8.8	
Moisture Content ED006: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Chromium 744 Copper 743 Nickel 744	() () () ()	1.0 0.2 0.2 0.2 0.2 0.2	% meq/100g meq/100g meq/100g meq/100g	4.8 	3.1 	8.8	
ED006: Exchangeable Cations on Alkaline Soils Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Chromium 744 Lead 743 Nickel 744	() () ()	0.2 0.2 0.2 0.2	meq/100g meq/100g meq/100g meq/100g			8.8	
Exchangeable CalciumExchangeable MagnesiumExchangeable PotassiumExchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron743Arsenic744Cadmium744Copper744Lead743Nickel744	() ()	0.2 0.2 0.2	meq/100g meq/100g meq/100g				
Exchangeable Magnesium Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Chromium 744 Lead 743 Nickel 744	() ()	0.2 0.2 0.2	meq/100g meq/100g meq/100g				
Exchangeable Potassium Exchangeable Sodium Cation Exchange Capacity EG005(ED093)T: Total Metals by ICP-AES Iron 743 Arsenic 744 Cadmium 744 Chromium 744 Lead 743 Nickel 744	(0.2	meq/100g meq/100g			I	
Exchangeable SodiumCation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron743Arsenic744Cadmium744Chromium744Copper744Lead743Nickel744	(0.2	meq/100g			2.0	
Cation Exchange CapacityEG005(ED093)T: Total Metals by ICP-AESIron743Arsenic744Cadmium744Chromium744Copper744Lead743Nickel744						<0.2	
EG005(ED093)T: Total Metals by ICP-AESIron743Arsenic744Cadmium744Chromium744Copper744Lead743Nickel744			meq/100g			13.2	
Iron 743 Arsenic 744 Cadmium 744 Chromium 744 Copper 744 Lead 743 Nickel 744		1					1
Arsenic744Cadmium744Chromium744Copper744Lead743Nickel744	9-89-6 0.	.005	%			1.38	
Cadmium744Chromium744Copper744Lead743Nickel744		5	mg/kg	<5	<5		
Chromium744Copper744Lead743Nickel744		1	mg/kg	<1	<1		
Copper 744 Lead 743 Nickel 744		2	mg/kg	15	<2		
Lead 743 Nickel 744		5	mg/kg	15	<5		
Nickel 744		5	mg/kg	33	<5		
		2	mg/kg	12	<2		
Zinc 744		5	mg/kg	80	<5		
EG035T: Total Recoverable Mercury by FIMS							
	9-97-6	0.1	mg/kg	<0.1	<0.1		
EP004: Organic Matter							
Organic Matter	(0.5	%			1.3	
Total Organic Carbon		0.5	%			0.8	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon							
		0.5	mg/kg	<0.5			
-		0.5	mg/kg	<0.5			
		0.5	mg/kg	<0.5			
-		0.5	mg/kg	<0.5			
Phenanthrene	5-13-11	0.5	mg/kg	<0.5			

Page : 4 of 6 Work Order : ES2243874 Client : ENVIROWEST CONSULTING Project : 15067

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH4	BLANK	BH3	
(Samplir	ng date / time	01-Dec-2022 00:00	14-Jan-2022 00:00	02-Dec-2022 00:00	
Compound	CAS Number	LOR	Unit	ES2243874-001	ES2243874-002	ES2243874-003	
	0.10110.00			Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued					
Anthracene	120-12-7	0.5	mg/kg	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	<0.5			
Pyrene	129-00-0	0.5	mg/kg	<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5			
Chrysene	218-01-9	0.5	mg/kg	<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6			
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2			
EP080/071: Total Petroleum Hydrocarb	ons						1
C6 - C9 Fraction		10	mg/kg	<10			
C10 - C14 Fraction		50	mg/kg	<50			
C15 - C28 Fraction		100	mg/kg	<100			
C29 - C36 Fraction		100	mg/kg	<100			
^ C10 - C36 Fraction (sum)		50	mg/kg	<50			
EP080/071: Total Recoverable Hydroca		3 Eraction					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10			
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10			
(F1)	OU_OIO BIEX						
>C10 - C16 Fraction		50	mg/kg	<50			
>C16 - C34 Fraction		100	mg/kg	<100			
>C34 - C40 Fraction		100	mg/kg	<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50			
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5			

Page : 5 of 6 Work Order : ES2243874 Client : ENVIROWEST CONSULTING Project : 15067

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH4	BLANK	BH3	
		Sampli	ng date / time	01-Dec-2022 00:00	14-Jan-2022 00:00	02-Dec-2022 00:00	
Compound	CAS Number	LOR	Unit	ES2243874-001	ES2243874-002	ES2243874-003	
				Result	Result	Result	
EP080: BTEXN - Continued							
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1			
EP075(SIM)S: Phenolic Compound	d Surrogates						
Phenol-d6	13127-88-3	0.5	%	87.2			
2-Chlorophenol-D4	93951-73-6	0.5	%	95.5			
2.4.6-Tribromophenol	118-79-6	0.5	%	58.5			
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	95.8			
Anthracene-d10	1719-06-8	0.5	%	94.7			
4-Terphenyl-d14	1718-51-0	0.5	%	98.6			
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	97.3			
Toluene-D8	2037-26-5	0.2	%	99.2			
4-Bromofluorobenzene	460-00-4	0.2	%	96.1			

ALS

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

(print and signature) Virginia Bragg	Investigator. I attest that the proper field sampling procedures were used during the collection of these samples.					BH3 A(LARGE) 0	AK A	BH4 A 0	Sample ID Container*	Quotation #: Courier/CN: EN/222/20	Laboratory: Australian Laboratory Services 277 Woodpark Road SMITHFIELD NSW 2164	Email: greg@envirowest.net.au Contact Person: Greg Madafiglio Invoice: accounts@envirowest.net.au	cha.	Ref: 15067 Investigator: Envirowest Consulting 9 Cameron Place
f Date	npling procedures v					01/12/2022	01/12/2022	01/12/2022	Sampling Date/Time			stau		
Date 05/12/2022	vere used										Water	-		Sar
)22	during the	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				×	×	×			Soil			Sample matrix
Time 16:00	¢D										Sludge			X
Received by: (print and signature)	Sampler name: G Date: 01/12/2022					×	X	Х			Cool			 Sam
ure	Sampler name: Greg M Date: 01/12/2022		······································	1. 							HNO3/H CI	-		Sample preservation
and the	g Madafiglio			201		X	×	Х			H Unpre-			vation
	Time: 11:00		**************************************			and the control of the		X	TRH,	PAH,8 N	IETALS	S26		
Date $\frac{6}{2}/2$ Time	0						×		8 ME	TALS		S2	м	
e Kon						X			CEC H,EC		C,CLAY,p	P22	Method Code	Analysis
elephone : + 01-7-0/ 04 0000			Work Order Reference ES2243874	Environmental Division		مريسة وتعاريبات وارقار الارابة المراقب ويستعمد ومحمد ومستعمد ومراقبا والمراقب والمراقب والمراقب والمراقب								

QUALITY CONTROL REPORT

Work Order	: ES2243874	Page	: 1 of 9	
Client		Laboratory	: Environmental Division	Sydney
Contact	: MR GREG MADAFIGLIO	Contact	: Customer Services ES	
Address	: 9 CAMERON PLACE PO BOX 8158 ORANGE NSW, AUSTRALIA 2800	Address	: 277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	: +61 63614954	Telephone	: +61-2-8784 8555	
Project	: 15067	Date Samples Received	: 06-Dec-2022	SMILLE.
Order number	: 15067	Date Analysis Commenced	: 06-Dec-2022	
C-O-C number	: 15067	Issue Date	: 13-Dec-2022	
Sampler	:			Hac-MRA NAIA
Site	: 15067			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Inorganics, Smithfield, NSW
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
G005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 4749894)							
ES2243644-035	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	39	37	3.7	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	79	74	6.7	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	19	17	8.1	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	9	8	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	40	37	6.7	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	49800	47000	5.9	0% - 20%
S2243644-052	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	38	38	0.0	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	42	46	9.2	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	7	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	15	16	8.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	20	21	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	22	24	9.2	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	30500	31100	1.9	0% - 20%
G005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 4756507)							
S2243873-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	24	24	0.0	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	12	11	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	11	11	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	16	24	36.2	No Limit

Page	: 3 of 9
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
EG005(ED093)T: T	otal Metals by ICP-AES	(QC Lot: 4756507) - continued							
ES2243873-001	Anonymous	EG005T: Iron	7439-89-6	50	mg/kg	35600	32800	8.2	0% - 20%
EA001: pH in soil	using 0.01M CaCl extrac	ct (QC Lot: 4757148)							
ES2243874-003	BH3	EA001: pH (CaCl2)		0.1	pH Unit	7.5	7.4	0.0	0% - 20%
EA002: pH 1:5 (So	ils) (QC Lot: 4749899)								
EW2205609-006	Anonymous	EA002: pH Value		0.1	pH Unit	7.2	6.5	9.6	0% - 20%
ES2243820-010	Anonymous	EA002: pH Value		0.1	pH Unit	6.3	6.0	4.9	0% - 20%
EA010: Conductiv	ity (1:5) (QC Lot: 47498				· ·			1	
ES2243820-001	Anonymous	EA010: Electrical Conductivity @ 25°C		1	µS/cm	78	81	4.5	0% - 20%
ES2243820-010	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	78	73	7.5	0% - 20%
		0°C) (QC Lot: 4749904)		·	perein			110	070 2070
ES2243820-006	Anonymous			0.1	%	8.2	7.9	3.8	0% - 20%
		EA055: Moisture Content		0.1	70	0.2	7.9	3.0	0% - 20%
		0°C) (QC Lot: 4756508)							
ES2243873-003	Anonymous	EA055: Moisture Content		0.1	%	1.1	1.3	14.9	No Limit
ED006: Exchange		e Soils (QC Lot: 4758705)							
ES2243874-003	BH3	ED006: Exchangeable Calcium		0.2	meq/100g	8.8	9.3	5.9	0% - 20%
		ED006: Exchangeable Magnesium		0.2	meq/100g	2.4	2.5	4.6	0% - 50%
		ED006: Exchangeable Potassium		0.2	meq/100g	2.0	2.0	0.0	0% - 50%
		ED006: Exchangeable Sodium		0.2	meq/100g	<0.2	<0.2	0.0	No Limit
		ED006: Cation Exchange Capacity		0.2	meq/100g	13.2	13.9	5.2	0% - 20%
EG035T: Total Re	coverable Mercury by F	IMS (QC Lot: 4756506)							
ES2243873-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP004: Organic M	atter (QC Lot: 4751297)								
ES2243874-003	BH3	EP004: Organic Matter		0.5	%	1.3	1.3	0.0	No Limit
		EP004: Total Organic Carbon		0.5	%	0.8	0.8	0.0	No Limit
ES2243993-002	Anonymous	EP004: Organic Matter		0.5	%	0.9	1.0	0.0	No Limit
	,	EP004: Total Organic Carbon		0.5	%	0.5	0.6	0.0	No Limit
EP075(SIM)B: Poly	vnuclear Aromatic Hvdr	ocarbons (QC Lot: 4754853)						1	
ES2243899-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	, alonymouo	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	1	EP075(SIM): Chrysene	210-01-9	0.0	ing/kg	~0.5	NU.U	0.0	

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyn	uclear Aromatic Hyd	rocarbons (QC Lot: 4754853) - continued							
ES2243899-005	Anonymous	EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2243873-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4754852)							
ES2243899-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2243873-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbo	ns (QC Lot: 4755249)							
ES2243835-061	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2243835-007	Anonymous			10	mg/kg	<10	<10	0.0	No Limit
LOZZ40000-08/	Anonymous	EP080: C6 - C9 Fraction		10	iiig/kg	~10	~10	0.0	

Page	: 5 of 9
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4754852)							
ES2243899-005	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2243873-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4755249)							
ES2243835-061	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2243835-097	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Lot: 4755249)								
ES2243835-061	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2243835-097	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

CAS Number 394) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-38-2	LOR 5 1 2 5 5 5 5 2 5	Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Report Result <5 <1 <2 <55 <50 <50 <5 <22	Spike Concentration 121.1 mg/kg 0.74 mg/kg 19.6 mg/kg 52.9 mg/kg 31660 mg/kg 60.8 mg/kg	Spike Recovery (%) LCS 95.6 114 109 105 99.0	Acceptable Low 88.0 70.0 68.0 89.0 89.0	Limits (%) High 113 130 132 111 112
394) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	5 1 2 5 50 5 2 5 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<5 <1 <2 <5 <50 <5	121.1 mg/kg 0.74 mg/kg 19.6 mg/kg 52.9 mg/kg 31660 mg/kg	95.6 114 109 105 99.0	88.0 70.0 68.0 89.0 89.0	113 130 132 111
7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	1 2 5 50 5 2 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <2 <5 <50 <5	0.74 mg/kg 19.6 mg/kg 52.9 mg/kg 31660 mg/kg	114 109 105 99.0	70.0 68.0 89.0 89.0	130 132 111
7440-43-9 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	1 2 5 50 5 2 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <2 <5 <50 <5	0.74 mg/kg 19.6 mg/kg 52.9 mg/kg 31660 mg/kg	114 109 105 99.0	70.0 68.0 89.0 89.0	130 132 111
7440-47-3 7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	2 5 50 5 2 5	mg/kg mg/kg mg/kg mg/kg mg/kg	<2 <5 <50 <5	19.6 mg/kg 52.9 mg/kg 31660 mg/kg	109 105 99.0	68.0 89.0 89.0	132 111
7440-50-8 7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	5 50 5 2 5	mg/kg mg/kg mg/kg mg/kg	<5 <50 <5	52.9 mg/kg 31660 mg/kg	105 99.0	89.0 89.0	111
7439-89-6 7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	50 5 2 5	mg/kg mg/kg mg/kg	<50 <5	31660 mg/kg	99.0	89.0	
7439-92-1 7440-02-0 7440-66-6 507) 7440-38-2	5 2 5	mg/kg	<5				112
7440-02-0 7440-66-6 507) 7440-38-2	2 5	mg/kg		60.8 mg/kg	400		
7440-66-6 507) 7440-38-2	5		<2		103	82.0	119
507) 7440-38-2		mg/kg		15.3 mg/kg	100	80.0	120
7440-38-2			<5	139.3 mg/kg	92.5	66.0	133
7440-38-2	_						
7440-43-9	5	mg/kg	<5	121.1 mg/kg	102	88.0	113
	1	mg/kg	<1	0.74 mg/kg	123	70.0	130
7440-47-3	2	mg/kg	<2	19.6 mg/kg	106	68.0	132
7440-50-8	5	mg/kg	<5	52.9 mg/kg	105	89.0	111
7439-89-6	50	mg/kg	<50	31660 mg/kg	104	89.0	112
7439-92-1	5	mg/kg	<5	60.8 mg/kg	102	82.0	119
7440-02-0	2	mg/kg	<2	15.3 mg/kg	101	80.0	120
7440-66-6	5	mg/kg	<5	139.3 mg/kg	94.2	66.0	133
		pH Unit		4 pH Unit	101	98.8	101
				7 pH Unit	101	98.8	101
	1	µS/cm	<1	1412 µS/cm	97.5	92.0	108
• 4758705)							
	0.2	mea/100a	<0.2	2.5 meg/100g	97.6	80.0	110
							110
							110
							110
	0.2		<0.2				
756506)							
	0.1	ma/ka	<0.1	0.087 mg/kg	96.0	70.0	125
1400 01 0	0.1		-0.1	0.007 mg/ng	00.0	70.0	120
	0.5	0/	<0.5	2.52.0/	95.0	82.0	98.0
							98.0
	7439-89-6 7439-92-1 7440-02-0 7440-66-6	7439-89-6 50 7439-92-1 5 7440-02-0 2 7440-66-6 5 7440-66-6 1 1 : 4758705) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 756506) 0.5	7439-89-6 50 mg/kg 7439-92-1 5 mg/kg 7440-02-0 2 mg/kg 7440-66-6 5 mg/kg pH Unit 1 μS/cm 0.2 meq/100g 0.5 %	7439-89-6 50 mg/kg <50	7439-89-6 50 mg/kg <50 31660 mg/kg 7439-92-1 5 mg/kg <5	T439-89-6 50 mg/kg <50 31660 mg/kg 104 7439-92-1 5 mg/kg <5	7439-89-6 50 mg/kg <50 31660 mg/kg 104 89.0 7439-92-1 5 mg/kg <5

Page	: 7 of 9
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLo	t: 4754853)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	90.2	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	91.3	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	102	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	97.7	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	104	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	96.0	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	102	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	93.4	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	104	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	102	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	95.7	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	96.1	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	99.1	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	71.6	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	72.9	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	76.6	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 47548	52)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	94.4	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	96.0	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	98.0	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 475524	19)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	68.4	128
	Erections (OCL	ot: 4754952)	3 3					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	99.7	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	91.5	74.0	123
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	102	63.0	130
			119/169	100	220 mg/ng	102	00.0	101
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	C6_C10	ot: 4755249). 10	malles	<10	31 mg/kg	108	68.4	128
EP080: C6 - C10 Fraction	00_010	10	mg/kg	<10	ST Hig/kg	100	00.4	120
EP080: BTEXN (QCLot: 4755249)	74.40.6					110	22.0	
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	110	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	106	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	106	66.0	118
	106-42-3						00.5	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	106	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	102	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	imits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4749894)						
ES2243644-035	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	89.8	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	95.6	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	86.9	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	96.9	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	94.6	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	74.6	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	91.1	66.0	133
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4756507)						
ES2243873-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	92.3	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	92.1	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	82.3	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	93.3	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	90.5	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	91.1	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	89.8	66.0	133
EG035T. Total Re	coverable Mercury by FIMS (QCLot: 4756506)				1		
ES2243873-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	106	70.0	130
	,			0		1010	
	atter (QCLot: 4751297)						100
ES2243874-003	BH3	EP004: Organic Matter		0.63 %	86.1	70.0	130
		EP004: Total Organic Carbon		0.36 %	88.1	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 4754853)						
ES2243873-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	96.2	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.3	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4754852)						
				480 mg/kg	95.3	73.0	137
ES2243873-001	Anonymous	EP071: C10 - C14 Eraction		400 Mu/Ku			
ES2243873-001	Anonymous	EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction					131
ES2243873-001	Anonymous	EP071: C15 - C28 Fraction		3100 mg/kg 2060 mg/kg	109 109	53.0 52.0	131 132
				3100 mg/kg	109	53.0	
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4755249)	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction		3100 mg/kg 2060 mg/kg	109 109	53.0 52.0	132
EP080/071: Total F ES2243835-061	Petroleum Hydrocarbons (QCLot: 4755249) Anonymous	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP080: C6 - C9 Fraction		3100 mg/kg	109	53.0	131 132 130
EP080/071: Total F ES2243835-061 EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4755249)	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP080: C6 - C9 Fraction		3100 mg/kg 2060 mg/kg	109 109 89.2	53.0 52.0 70.0	132
EP080/071: Total F ES2243835-061	Petroleum Hydrocarbons (QCLot: 4755249) Anonymous	EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP080: C6 - C9 Fraction		3100 mg/kg 2060 mg/kg	109 109	53.0 52.0	132

Page	: 9 of 9
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Matrix Spike (MS) Report Sub-Matrix: SOIL Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number Concentration MS Low High Method: Compound EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4754852) - continued ES2243873-001 Anonymous EP071: >C34 - C40 Fraction 890 mg/kg 106 52.0 132 ----EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4755249) ES2243835-061 Anonymous C6 C10 130 37.5 mg/kg 88.9 70.0 EP080: C6 - C10 Fraction EP080: BTEXN (QCLot: 4755249) ES2243835-061 71-43-2 Anonymous EP080: Benzene 2.5 mg/kg 88.3 70.0 130 108-88-3 86.7 70.0 130 2.5 mg/kg EP080: Toluene EP080: Ethylbenzene 100-41-4 2.5 mg/kg 88.7 70.0 130 2.5 mg/kg 88.0 70.0 130 EP080: meta- & para-Xylene 108-38-3 106-42-3 EP080: ortho-Xylene 95-47-6 2.5 mg/kg 92.2 70.0 130 91-20-3 2.5 mg/kg 86.9 70.0 130 EP080: Naphthalene

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES2243874	Page	: 1 of 7		
Client		Laboratory	: Environmental Division Sydney		
Contact	: MR GREG MADAFIGLIO	Telephone	: +61-2-8784 8555		
Project	: 15067	Date Samples Received	: 06-Dec-2022		
Site	: 15067	Issue Date	: 13-Dec-2022		
Sampler	:	No. of samples received	: 3		
Order number	: 15067	No. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method	Ex	Extraction / Preparation Ana					
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved							
BLANK				08-Dec-2022	28-Jan-2022	314	
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved							
BLANK	08-Dec-2022	13-Jul-2022	148	12-Dec-2022	13-Jul-2022	152	
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved							
BLANK	08-Dec-2022	11-Feb-2022	300	12-Dec-2022	11-Feb-2022	304	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract							
Soil Glass Jar - Unpreserved (EA001) BH3	02-Dec-2022	09-Dec-2022	09-Dec-2022	~	09-Dec-2022	09-Dec-2022	1
EA002: pH 1:5 (Soils)							
Soil Glass Jar - Unpreserved (EA002) BH3	02-Dec-2022	07-Dec-2022	09-Dec-2022	1	07-Dec-2022	07-Dec-2022	~
EA010: Conductivity (1:5)							
Soil Glass Jar - Unpreserved (EA010) BH3	02-Dec-2022	07-Dec-2022	09-Dec-2022	1	07-Dec-2022	04-Jan-2023	1
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BH4	01-Dec-2022				08-Dec-2022	15-Dec-2022	1
Soil Glass Jar - Unpreserved (EA055) BH3	02-Dec-2022				06-Dec-2022	16-Dec-2022	1
Soil Glass Jar - Unpreserved (EA055) BLANK	14-Jan-2022				08-Dec-2022	28-Jan-2022	×

Page	: 3 of 7
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED006: Exchangeable Cations on Alkaline Soils							
Soil Glass Jar - Unpreserved (ED006)							
BH3	02-Dec-2022	09-Dec-2022	30-Dec-2022	✓	09-Dec-2022	30-Dec-2022	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)			20 May 2022		40.5	20 May 2022	
BH4	01-Dec-2022	08-Dec-2022	30-May-2023	✓	12-Dec-2022	30-May-2023	✓
Soil Glass Jar - Unpreserved (EG005T) BH3	02-Dec-2022	06-Dec-2022	31-May-2023	1	08-Dec-2022	31-May-2023	1
Soil Glass Jar - Unpreserved (EG005T)				•			•
BLANK	14-Jan-2022	08-Dec-2022	13-Jul-2022	×	12-Dec-2022	13-Jul-2022	×
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
BH4	01-Dec-2022	08-Dec-2022	29-Dec-2022	√	12-Dec-2022	29-Dec-2022	✓
Soil Glass Jar - Unpreserved (EG035T)			44 E-1 0000		40.5	14 E-1 0000	
BLANK	14-Jan-2022	08-Dec-2022	11-Feb-2022	*	12-Dec-2022	11-Feb-2022	*
EP004: Organic Matter							
Soil Glass Jar - Unpreserved (EP004) BH3	02-Dec-2022	07-Dec-2022	30-Dec-2022	1	07-Dec-2022	30-Dec-2022	,
	02-Dec-2022	07-Dec-2022	30-Dec-2022	~	07-Dec-2022	30-Dec-2022	•
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BH4	01-Dec-2022	09-Dec-2022	15-Dec-2022	1	12-Dec-2022	18-Jan-2023	1
EP080/071: Total Petroleum Hydrocarbons				•			•
Soil Glass Jar - Unpreserved (EP080)							
BH4	01-Dec-2022	08-Dec-2022	15-Dec-2022	1	13-Dec-2022	15-Dec-2022	1
Soil Glass Jar - Unpreserved (EP071)							
BH4	01-Dec-2022	09-Dec-2022	15-Dec-2022	1	12-Dec-2022	18-Jan-2023	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)							
BH4	01-Dec-2022	08-Dec-2022	15-Dec-2022	✓	13-Dec-2022	15-Dec-2022	✓
Soil Glass Jar - Unpreserved (EP071) BH4	01-Dec-2022	09-Dec-2022	15-Dec-2022	1	12-Dec-2022	18-Jan-2023	
	01-Dec-2022	03-060-2022	13-060-2022	✓	12-Dec-2022	10-0411-2020	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BH4	01-Dec-2022	08-Dec-2022	15-Dec-2022	1	13-Dec-2022	15-Dec-2022	1
	01 200-2022			v			v

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

uality Control Sample Type Count			ount	Rate (%)			Quality Control Specification	
Analytical Methods	Method	20	Reaular	Actual	Expected	Evaluation		
aboratory Duplicates (DUP)								
Electrical Conductivity (1:5)	EA010	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Exchangeable Cations on Alkaline Soils	ED006	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
loisture Content	EA055	2	17	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Drganic Matter	EP004	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (SIM)	EP075(SIM)	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
H (1:5)	EA002	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
H in soil using a 0.01M CaCl2 extract	EA001	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS	EG035T	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-AES	EG005T	3	27	11.11	10.00	~	NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
_aboratory Control Samples (LCS)								
Electrical Conductivity (1:5)	EA010	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
exchangeable Cations on Alkaline Soils	ED006	1	1	100.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
organic Matter	EP004	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard	
AH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Н (1:5)	EA002	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS	EG035T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-AES	EG005T	2	27	7.41	5.00	~	NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
lethod Blanks (MB)								
lectrical Conductivity (1:5)	EA010	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
xchangeable Cations on Alkaline Soils	ED006	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Organic Matter	EP004	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
AH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS	EG035T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-AES	EG005T	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
/atrix Spikes (MS)								
Drganic Matter	EP004	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fotal Mercury by FIMS	EG035T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fotal Metals by ICP-AES	EG005T	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page	5 of 7
Work Order	: ES2243874
Client	: ENVIROWEST CONSULTING
Project	: 15067

Matrix: SOIL				Evaluation	n: × = Quality Co	ontrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Exchangeable Cations on Alkaline Soils	ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Lyons 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).

Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Lyons method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.